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We demonstrate that delta values (�) and other relative ratio-based isotopic
expressions can vary with the total amount of isotopes present in the system or
subject being evaluated. Although these scaling effects are routinely overlooked,
interpretive errors such as noting of spurious treatment effects or not detecting
significant effects may occur. Algebraic conversions of linear or log-log equations
(rare isotope predicted by common or total isotope) that suggest apparently
miniscule scaling will fit the observed relationship between isotopic ratios and
total or common isotopes. When the ranges of scaling induced differences in
isotopic ratios are converted to the equivalent discrimination expressions (D) or
delta values (�), differences are within the range that is generally reported in the
isotopic literature. Therefore, interpreting observed differences in isotopic ratios
may require an evaluation to determine whether treatments directly affect how a
rare isotope is accumulated or are associated with differences in denominator size.
If effects are direct, points for different treatments fall on different linear and log-
log (total isotope vs. rare isotope or common isotope vs. rare isotope) regression
lines. Slope differences or derivatives may be more revealing than changes in
isotopic ratios and better represent system change in a scaling system. By simply
recording total common isotope or total elemental content, standard statistical
procedures that evaluate changes in slopes or derivatives can be combined with an
ANCOVA to better evaluate isotopic data. In many cases, scaling issues will not
interfere with interpretations. In other situations it may be difficult to untangle a
combination of ubiquitous scaling, treatment induced scaling and direct
treatment effects.

Keywords: carbon isotopes; delta values; nitrogen isotopes; ratios; regression;
slope-based assessments

1. Introduction

Isometric scaling (or no scaling) can be defined as the condition where a ratio Y/M does
not depend on denominator size. If the value of a ratio depends on its denominator,
allometric scaling occurs. The terminology attributed to allometric scaling was first coined
in 1936 [1]. Since then scaling relationships have been extensively studied [2–4] and are
often modelled as a power law Y ¼ Y0M

b, where Y is some physiological, morphological,
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or ecological characteristic that varies with another characteristic M (typically body mass).
In our isotopic application Y represents a rare isotope and M represents total or common
isotope. Hereafter, total isotope refers to total elemental content.

Log Y vs. logM plots produce a slope equal to the scaling exponent. Allometric scaling
(or simply scaling) occurs when b 6¼ 1, and the ratio Y/M is then dependent on
denominator size. A ratio is also dependent on its denominator (scaling occurs) if the
relationship between denominator and numerator is described by a linear function with a
non-zero y-intercept [5–8]. In a scaling system where individuals have different amounts of
total M (total or common isotope) the ratio Y/M (rare isotope : common isotope or rare
isotope : total isotope) in sampled individuals will be statistically related to M. Since total
isotope and common isotope are almost always strongly correlated to organism size,
isotopic ratios are often dependent on the sizes of the organisms or other subject pools
being studied.

Studies where ratios lead to biased or even opposite conclusions than what a direct
evaluation of the relationship between numerators and denominators reveal are well
documented [5,8–14]. Packard and Boardman [11] suggested that researchers avoid using
ratios and use an analysis of covariance (ANCOVA) instead. Raubenheimer and Simpson
[15] make a similar argument. Every use of ratios must be based on knowledge of ratio
behaviour in respect to size changes [8–10,13].

Since ratios can scale with size (whatever size is; body mass, total amount of isotopes
etc.), their use has been widely abandoned in many comparative studies; especially in
morphometrics [8]. It is thus surprising that ratio-based expressions are widely used in
isotopic studies without any testing of the isometric assumption that justifies their use.
If the isometric assumption is not met, ratio-based expressions are an inappropriate
attempt to correct for differences in total isotope. Ecologists often study how ratio-based
isotopic expressions change with time, treatment or trophic level. However, in many cases
total isotope content is not measured or rigorously evaluated.

One could argue that correcting for size differences is sometimes inappropriate. For
example, larger fish eating bigger and more enriched 15N prey are expected to have more
enriched 15N :14N composition. Statistically removing the size-effect does not change the
fact that larger fish are indeed more enriched. However, one may want to determine
whether or not two species fundamentally differ in isotopic composition independent of
expected differences due to size alone. Perhaps a very large individual from a small species
is similar in its rare isotope accumulation to a small individual from large species. Similar
sized individuals from different species may not differ. Alternatively a small species with a
lower �15N value than a large species may physiologically or behaviourally differ and
accumulate similar, more or less 15N on an equal size basis. Without replicate total
common and rare isotope data, it is impossible to untangle inherent species differences and
associated size effects. We advocate routine evaluations for both direct and indirect
(total isotope related) effects.

At first glance, it may appear that there is no a priori reason to suspect that ratio-based
isotopic expressions necessarily scale with total isotope in a natural system. However, there
are fundamental conceptual reasons to hypothesise that isotopic ratios scale. Detailed
conceptual examples are included in a supplementary document [16]. A brief discussion of
several possible mechanisms is described below.

One possible explanation for allometric scaling is that metabolic rates decline with
increasing animal size [2–4]. This suggests that turnover and changes in isotopic ratio
could also scale with body size. Isotopic ratios in smaller organisms could more quickly

2 T.L. Righetti et al.
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approach the more enriched or depleted isotopic composition of a new food source

because they have higher metabolism rates and faster isotopic turnover. Although this

mechanism is based on temporal differences that would disappear at equilibrium, many

ecological systems are constantly perturbed and never reach a stable state.
An isometric system where the plot of total common {x-axis} vs. total rare isotope

{y-axis} is linear with a zero y-intercept as common isotope accumulates is to be expected

as organisms grow when exposed to a food source with constant isotopic composition.

However, an interruption of an established isometric system with a different rate of rare

isotope accumulation as common isotope increases will result in a scaling system [7,16].

A new uptake trajectory must produce functions with a different slope and a non-zero

y-intercept, even if the new accumulation relationship remains linear.
In cyclic systems a total common isotope {x-axis} vs. total rare isotope {y-axis}, loss

trajectory that differs from an isotope accumulation curve will also cause scaling. Even if

isotopic uptake relationships remain unchanged during a second accumulation cycle, a

new trajectory cannot remain isometric (linear with a zero y-intercept). It is not realistic to

expect cyclic systems to always gain and lose rare isotopes along the same isometric line as

total or common isotopes increase or decline. Therefore, any system with consistent

hysteresis can produce allometric scaling over time, even if the hysteresis effect is quite

small for a single cycle. Perturbation and hysteresis effects likely confound true

metabolism-based biological scaling relationships, producing complex isotopic scaling

relationships that are difficult to predict or explain without a thorough understanding of

system history. Scaling effects may also arise from experimental variation and measure-

ment error [14].
Studies examining stable isotopes at or near natural abundance levels are usually

reported as delta values (�) in parts per thousand or per mil (‘ø’). Delta values and other

isotopic conventions describe relative differences between samples and a standard.

Therefore, common isotopic expressions are not absolute isotope abundances but

differences between sample readings and one or another of the widely used natural

abundance standards routinely used in isotopic research. For example �15N values are

defined as:

�15N ø vs: ½std� ¼ ðRsample � RstdÞ=Rstd

� �
� 1000

or

�15N ø vs: ½std� ¼ ðRsample=RstdÞ � 1
� �

� 1000

where absolute isotope ratios (R) are measured for sample and standard.
The value R is a ratio based on absolute numbers (At%) of atoms of a given isotope in

100 atoms of total element. In this case:

R ¼ At %15N=At %14N

Delta values defined as above and other relative isotopic expressions can be

algebraically converted to an isotopic ratio (rare isotope to common or total isotope).

However, making this conversion requires precise knowledge of the absolute ratio in the

scale-defining ratio, which is non-trivial. Delta values are used not only because they make

for more convenient numbers to discuss, but also because they allow researchers to

evaluate deviations from a standard with an imperfectly-known actual isotopic ratio.

International Journal of Environmental Analytical Chemistry 3
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In spite of the many good reasons for using relative isotopic expressions, they are
subject to the same mathematical principles and statistical limitations that apply to any
ratio. Therefore, we argue that routinely measuring total elemental content in individual
subjects (not the elemental content of the sample) is important. In the analyses that follow,
original data that were reported as either � or D values were converted to rare
isotope : common isotope or rare isotope : total isotope ratios. The total, common and rare
isotope content for individual subjects were then calculated for statistical evaluation.

Scaling effects can alter interpretations in tracer studies [6,7]. Published accounts also
suggest that metabolic-based scaling can complicate the interpretation of natural
abundance isotopic ratios. Carelton and del Rio [17] present data showing the rate of
13C incorporation into birds scales with bird size. In Jennings et al. [18], isotopic ratios are
also dependent on organism size. In del Rio et al. [19], the authors discuss the need to
consider body size when comparing isotopic composition among species. We want to
reiterate this important concept while emphasising that even apparently miniscule scaling,
if unaccounted for, can alter interpretation.

Log-log slopes that differ from 1 only by incredibly small margins (for example �0.001
or smaller) can still be mathematically and statistically important. Very small non-zero
y-intercepts for linear functions are also important. Algebraic conversions of linear or log-
log equations that suggest apparently miniscule scaling will fit the observed relationship
between isotopic ratios and total or common isotopes. If these relationships did not
statistically scale (for example, scaling exponents equal 1.000; rather than 0.999 or 1.001),
there would not be a statistically significant relationship between an isotopic ratio and its
denominator. The range in isotopic ratios that are commonly evaluated in ecological and
environmental studies is so small that even miniscule scaling effects influence interpre-
tation. If an isometric assumption is not met, using ratios to compensate for size-related
total isotope differences is inappropriate, regardless of the source of observed scaling.

It is not intuitively obvious whether a slope (change in rare isotope relative to the
change in common isotope) increases or decreases when only � values are evaluated.
Therefore, we also advocate the use of derivatives in addition to conventional ratio-based �
values. A derivative reflects the incremental gain or loss in rare isotope as total or common
isotope changes and reflects the isotopic composition of the element removed or added to
the system. In the often-used Keeling plot [20], 1/total CO2 concentration (x-axis) is
plotted against �13C (y-axis). The y-intercept of the least squares line is commonly assumed
to be the �-value of the CO2 source. A similar plot of 1/total CO2 (x-axis) vs.

13CO2 : total
CO2 ratio (y-axis) could be constructed where the y-intercept represents the 13C : total CO2

ratio of the CO2 source. The 13CO2 :
12CO2 source ratio could be similarly obtained by

determining the y-intercept of a 1/total 12CO2 vs.
13CO2 :

12CO2 plot.
Mathematically, the y-intercept b of the curve y/x¼ a/xþ b is simply the slope of the

line y¼ aþ bx. Thus, the inverse total CO2 vs.
13CO2 : total CO2 plot is simply an indirect

way of approximating the slope of the linear relationship between total CO2 (x-axis)
plotted against 13CO2 (y-axis). We suggest that directly calculating a derivative (d13CO2/d
total CO2 or d

13CO2/d
12CO2) and observing how it changes as total isotope increases or

declines is a more appropriate way to assess composition changes than indirectly
calculating the slope of a linear function when the original data may not be linear.

The following experimental examples support the theoretical scaling effects presented
above. Different-sized denominators (that reflect different total elemental content in
individual subjects) cause interpretive difficulties. We emphasise that when total isotope
content is known, three important evaluations can be made: (1) one can determine whether

4 T.L. Righetti et al.
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or not a ratio-based statistical model that assumes isometric scaling is appropriate, (2) the

derivative (d rare isotope/d total isotope or d rare isotope/d common isotope) can be

calculated, and (3) the data can be evaluated to determine if indirect scaling effects alter

isotopic ratio interpretation. The fact that total rare or common isotope analyses are both

analytically challenging and logistically cumbersome, does not justify routine statistical

evaluations of ratio-based expressions without testing the isometric assumption that

justifies their use.

2. Experimental

Measurements of �13C, D13C, �15N or 15N : 14N ratio were collected from the following

published studies: (1) Righetti et al. [6]: 15N tracer studies for shoot and root tissues in N

fertilised ornamental shrubs; (2) Minagawa and Wada [21]: evaluations of �15N in both a

relatively small mussel species (Septifer vigrutus) and a relatively large mussel species

(Mytilis edulis); (3) Hubick et al. [22] and Condon et al. [23]: relationships between dry

weight and D13C in peanut (Arachis hypogaeae) and wheat (Triticum aestivum); (4) Rau

et al. [24]: relationships between 15N : 14N ratio and fresh weight for Dover sole

(Microstomus pacificus) grown in polluted and unpolluted costal sites; (5) Jennings et al.

[18]: an evaluation of �15N for three (zooplankton, small fish, large fish) of the five faunal

groups the authors originally evaluated; (6) Keeling et al. [25] and Keeling et al. [26]:

global carbon studies on the seasonal oscillation in �13C values that are observed in the

Northern hemisphere; and (6) Francey et al. [27] and Friedli et al. [28]: global carbon

studies on the decline in atmospheric �13C over time derived from Antarctic ice core and

firn samples.
Measurements of total C or total N were evaluated when available. When total C or

total N were not available, they were estimated from literature values of the C and N

concentrations of the species involved. For the global carbon evaluations, total CO2

concentration in the atmosphere was used as a proxy for total C. We assume that rising or

falling CO2 amounts in a constant volume reflect total CO2 changes. All values for �13C or

�15N were converted to the respective isotopic 13C : total C, 13C : 12C, 15N : total N,
15N : 14N, 13CO2 : total CO2, or

13CO2 :
12CO2 ratios. We then used these ratios to calculate

the 13C, 15N or 13CO2 values that would be associated with the measured or estimated total

C, total N and total CO2 or
12C, 14N or 12CO2.

Plots of 12C (or total C) vs. 13C, 14N (or total N) vs. 15N and 12CO2 (or total CO2) vs.
13CO2 were then evaluated to determine if relationships statistically scale using SYSTAT

software (TableCurve� 2D, version 5.01; San Jose, Calif.). Log-log versions of the same

relationships were also statistically evaluated. The choice of defining the M term with

either common isotope or total isotope (for example 13C vs. 12C or (12Cþ 13C) can alter

scaling evaluations since mathematical relationships are not the same. However, in our

examples, statistical conclusions did not change when either approach was used. None-the-

less we have chosen to present the simpler unconfounded common isotope vs. rare isotope

analyses in all but the global carbon example.
MiniTab (version 15; Minitab Inc, State College, Pennsylvania) and SAS statistical

software (version 9.1; SAS Institute, Cary, N.C.) were used to conduct an analysis of

Covariance (ANCOVA) where either isotopic ratios, rare isotope or log10 rare isotope

were analyzed with the inverse of total isotope, total isotope or log10 total isotope as the

International Journal of Environmental Analytical Chemistry 5
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respective covariates to evaluate whether significant treatment effects for isotopic ratios
could be attributed to scaling effects.

Scaling exponents where b 6¼ 1 imply that ratios are dependent on their denominators.
However, the fact that a log-log plot with a slope not equal to 1.0 fits a data set does not
necessarily imply statistical curvature in the untransformed data. Linear functions with
non-zero y-intercepts can be very well approximated with curvilinear power functions that
implicitly assume zero y-intercepts. Therefore, SYSTAT TableCurve� 2D software was
used to evaluate curvature in the original non-transformed relationships described above
by evaluating the statistical significance of the x2 term in polynomial (y¼ axþ bx2þ c)
best-fit equations. Curvature was also evaluated by evaluating intercept inclusive power
functions (y¼ cþ axb) for b not equal to 1.0 and statistically significance in a. Since a
combination of linear functions with no statistical curvature that describe individual
treatments can produce significant polynomial fits when all data points are analyzed,
curvature was evaluated for both individual treatments and combined data sets. Since both
polynomial and intercept inclusive power function approaches for curvature detection,
when statistically significant, generally support similar conclusions, and since polynomial
fits usually had higher r2 values, only p values for polynomial significance are presented
unless the power function better explained the data.

Statistically significant curvature was also described by calculating derivatives (either d
rare isotope/d total isotope or d rare isotope/d common isotope) for either the total isotope
vs. rare isotope or common isotope vs. rare isotope relationships. Cubic functions with
7 knots were used to calculate the spline smoothed derivatives in SYSTAT software.

3. Results and discussion

We discuss confounding scaling effects that if overlooked, lead to misleading conclusions.
In the first example, scaling effects both created a spurious difference among plant species
and masked a significant difference between tissues in a 15N tracer study [6]. In the second
example, scaling obscures real differences among species in a study of invertebrate stable N
isotope composition [21]. In the third example we demonstrate that scaling occurs in the
accumulation of 13C relative to 12C in plants grown with adequate moisture [22,23]. A
fourth example indicates how both treatments (polluted and unpolluted food sources) and
scaling can affect isotopic N ratios in fish [24]. In the fifth example, we consider a case
where body size varied across size fractionated classes spanning six orders of magnitude,
thus a confounding of scaling and trophic effects is observed [18]. A global carbon example
is used to demonstrate how changing conditions can induce scaling effects that complicate
other ongoing analyses [25–28].

3.1 Scaling occurs in the accumulation of 15N relative to 14N in a tracer study

Righetti et al. [6] have demonstrated that the amount of N in plants that is derived from
fertiliser can scale with total N uptake. A portion of their data is presented to demonstrate
the statistical and mathematical properties that can confound isotopic ratios. In this and
all subsequent examples, interpretation of the differences in ratio-based isotopic
expressions among different-sized samples may be more complex than what is traditionally
assumed. A tracer study was selected as our first example because differences are clearly
apparent in either the untransformed or log-log plots presented in Figure 1. Although the

6 T.L. Righetti et al.
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same principles apply, more subtle, and often visually undetectable but still significant,
differences in the natural abundance examples that follow are not as easy to conceptually
visualise. In natural abundance studies linear relationships with miniscule non-zero
intercepts or log-log scaling exponents that only slightly differ from 1.0 have scaling
implications.

Figure 1. Scaling relationships for 15N with 15N. (a) Total 14N vs. total 15N for root (S) and shoot
(h) tissues from three ornamental shrub genera (Weigela, Cornus and Euonymus grown at 25 mg g�1

of applied N in a tracer study that utilised depleted 15N. (b) Log10
14N vs. log10

15N for the same
ornamental shrub genera data presented in a. (c) 14N vs. 15N : 14N ratio of shoot tissue for the same
ornamental shrub genera data presented in a. The predicted relationships implied by the
untransformed linear function (_ _ _) in a, the log-log transformed power function (—) in b, and a
logarithmic best fit equation (___) are all shown. Data derived from Righetti et al. [6].

International Journal of Environmental Analytical Chemistry 7
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The 15N : 14N ratio was evaluated in both root and shoot tissues in three species of

ornamental shrubs [6]. Values for species and plant tissue main effects (tissue� species

interaction not significant, p5 0.783) are presented in Table 1. The smallest species has a

statistically smaller 15N : 14N ratio than the two larger species ( p5 0.0001). The question

we want to answer is if these species differences are indirectly due to size and total N

uptake differences among the three species or related to fundamentally different fertiliser

N uptake for the smaller species. Perhaps a very large Euanymus plant that was similar in

size and N uptake to small Cornus orWygeilia plants is physiologically similar with respect

to rare isotope accumulation. If effects are indirect, replicates of all three species will fall

on the same allometric regression line. If effects are direct, replicate points for individual
species will fall on different regression lines. From a visual examination of the data in both

the untransformed (Figure 1a) and log-log (Figure 1b) plots of total 14N vs. total 15N all

points within a tissue type appear to fall on the same regression lines.
A statistical approach to verify that points for different species do indeed fall on the

same allometric regression lines uses either 14N or log 14N as respective covariates in an

ANCOVA conducted on 15N or log10
15N. Since there are no covariate� species,

covariate� tissue type or covariate� tissue type� species interactions in our example,

the 14N vs. 15N or log 14N vs. log 15N slopes are statistically similar and the three

interaction terms can be dropped from the ANCOVA for either the untransformed or log-

log models. An ANCOVA without interaction terms can then be used to determine if

regression lines are similar or if intercepts differ. In our example, all species fall on the

same regression line within a tissue, but shoots and roots although they have the same

slope, fall on different allometric regression lines. The final ANCOVA can then be used to
produce 15N or log 15N covariate adjusted mean values that account for differences in total
14N shown in Table 1. ANCOVAs for both untransformed and log-log models where the

highest order interaction (covariate� tissue type� species), followed by the most

significant two-factor interaction term, and then the final two-factor interaction term

were sequentially removed are presented in (Supplementary Statistical Details). All other

Table 1. Differences among ornamental shrubs (Cornus sericea, Euonymus altus and Weigela
florida) and root and shoot tissues for least square means of 15N : 14N ratio, covariate adjusted total
15N and covariate adjusted log total 15N for plants grown under greenhouse conditions. Respective
covariates for 15N and log 15N were 14N and log 14N. Plants were grown at 25mg g�1 of applied N
in a tracer study that utilised depleted 15N. Data derived from Righetti et al. [6].

15N : 14N ratio
Covariate adjusted

Total 15N
Covariate adjusted

log total 15N

Species
C. sericea 0.00306 az 0.264 a �0.729 a
E. alatus 0.00271 b 0.266 a �0.731 a
W. florida 0.00309 a 0.255 a �0.745 a

Plant tissue
Root 0.00300 a 0.250 a �0.760 a
Shoot 0.00291 a 0.274 b �0.710 b

zValues for species or plant tissue that are followed by the same letter are not significantly different
( p5 0.05; Tukey multiple comparisons).

8 T.L. Righetti et al.
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ANCOVA analyses that are described below were conducted in a similar manner. A
standard ANOVA on the 15N : 14N ratio is also included in this supplemental material.

We found significant ( p5 0.001) species differences in the 15N : 14N ratio (Table 1).
There were no differences among tissues. The full-factorial GLM model determined that
only the effects of total 14N ( p5 0.001) and tissue type ( p5 0.002) were significant.
Species and species� tissue interactions were not significant. The intercepts (b) of the
common allometric lines were significantly less than zero for both tissues ( p5 0.003 for
both tissues). The slope of the common log-log regression lines were again in both cases
significantly greater than 1 ( p5 0.003 for both tissues). Therefore, the15N : 14N ratio must
necessarily increase with increasing total N as is shown for the shoot tissue in Figure 1c.
The predicted relationships implied by the untransformed linear function in Figure 1a, the
log-log transformed power function in Figure 1b, and a logarithmic best fit equation
are all shown.

We can thus conclude that the trend for lower 15N : 14N ratio in the smallest species is
then an epiphenomenon of less total N uptake in comparison with the other species.
Although tissue types appear to visually fall on different allometic regression lines in
Figure 1a and b, no statistical differences in 15N : 14N ratio for tissue type were detected in
a standard ANOVA (Table 1). A scaling effect masked significant differences in tissue type
that are only revealed when differences in total N are accounted for in an ANCOVA using
either untransformed or log-log transformed data. Scaling effects both created a spurious
difference among species and masked a significant difference between tissues. The x2 term
for a polynomial fit of the relationship between 15N and 14N was not statistically
significant for either individual or combined species in either shoot or root tissues.

3.2 Scaling masks significant effect for the accumulation of 15N relative to 14N

The �15N values for a relatively small mussel species (Septifer vigrutus) and a relatively
large species (Mytilis edulis), were not significantly different [21]. Over time, the �15N
values initially increased then declined, approaching, but still greater than, the value of the
food source for S. vigrutus. Mytilis edulis showed a similar initial increase, but the
subsequent decline was less distinct [21]. We evaluated scaling in both species. Our goals
were (1) to demonstrate that log-log slopes that differ from 1 only by incredibly small
margins can still be mathematically and statistically important; and (2) to demonstrate
how regression and ANCOVA could reveal significant differences in 15N accumulation in
the two species that are obscured if size related total N differences are not taken into
account.

In this example, we use 14N to approximate total N. Shell length in the original
reference was related to total 14N for both species (r2 values of 0.95 and 0.97 for S. vigrutus
and M. edulis, respectively), and the species with greater total N had longer shells. A plot
of log10

14N vs. log10
15N (Figure 2a) exhibits a nearly perfect relationship (r2¼ 1.0 when

rounded to 5 decimal places). Since isotopic ratios have important differences that are
often detected in the 3rd, 4th or 5th decimal place and the size of subjects (and total
isotope) being evaluated may vary by several orders of magnitude, almost all of the
variation in a plot of common or total isotopes vs. rare isotope is due to changes in size.
Therefore, exceptionally high r2 values are to be expected in isotopic research. Since
relationships are so strong, very subtle differences between slopes and y-intercepts can be
statistically detected.

International Journal of Environmental Analytical Chemistry 9
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When species are plotted individually, 15N scales with 14N for the smaller species
(b¼ 0.9991� 0.0006, 95% C.I.), but there is isometric scaling for the larger species
(b¼ 1.0000� 0.0004, 95% C.I.). Total N and �15N data from the original reference were
used to determine the total mass of 15N. The initial total N and �15N values for the two
species immediately after the experiment was initiated were not used.

Although b is only slightly less than 1.0 for S. vigrutus, it still suggests significant
variation in 15N : 14N ratios with total N. This emphasizes that seemingly negligible
scaling effects can affect the interpretation of ratio-based expressions. The 15N : 14N ratio
(Figure 1b) decreased with size for the smaller species S. virgutus. Although the ratio
differences in Figure 1b appear small, they are algebraically equivalent to the � value range
of 7.87–12.12 in the original reference [21].

For many scientists, it is counterintuitive to believe that miniscule deviations from
isometric scaling can alter interpretation. However, it is mathematically inconsistent to
‘not believe’ that the linear y-intercepts significantly differ from zero or to ‘not believe’ the
log-log slopes differ from 1.0, without also challenging the fact that the ratio is, indeed,
statistically related to its denominator. The relationships are algebraically linked. When
isotopic ratios are converted to the equivalent ratio-based expressions, the calculated
differences are in the ranges that are generally reported in the isotopic literature.

Figure 2. Scaling relationships for 15N and 14N in mussel. (a) Log10
14N vs. log10

15N for
Septifer vigrutus (#) and Mytilus edulis (N) species of mussel, data for one of which scales. (b)
Relationship between 15N : 14N ratio and 14N (mussel size) for the scaling species (Septifer vigrutus).
Data derived from � values from Minagawa and Wada [23].

10 T.L. Righetti et al.
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If the scaling effect is ignored and it is assumed that 15N discrimination is independent
of body size, then the difference in �15N values between the two species (9.38 for S. virgutus
vs. 8.75 for M. edulis) is not statistically significant ( p5 0.22 for a two-sample t-test).
P values implying that slopes and y-intercepts for the two species were significantly
different (the larger species, M. edulis, appears to have a steeper slope) approach statistical
significance ( p5 0.075 and 0.10 for slopes and intercepts, respectively). In an analysis of
covariance of log10(

15N) with log10(
14N) as a covariate, the species� log 15N interaction

was significant ( p5 0.014), implying thatM. edulis accumulates more 15N as 14N increases
than does S. vigrutus, even though its overall 15N : 14N ratio is similar (actually slightly but
not significantly less).

We can conclude that the change in 15N as 14N increases is different between the two
species, which in a broader sense means that there are significant species differences [29].
The two species have a significant difference in 15N discrimination, which was originally
obscured by allometric scaling because size differences between the species were not
accounted for in the scaling species. The x2 term for a polynomial fit of the relationship
between 15N and 14N was not statistically significant for either individual or combined
species.

3.3 Scaling occurs in the accumulation of 13C relative to 12C

Hubick et al. [22] found a negative relationship between dry matter production and D13C
of peanut (Arachis hypogaeae) cultivars. Discrimination was lower (13C : 12C ratios higher)
for the largest peanut cultivar. Conversely, Condon et al. [23] saw a positive relationship
between biological yield and D13C for wheat (Triticum aestivum) cultivars.

We suspected that, although 13C : 12C ratios change in opposite directions as size (and
total 12C) increases, it is likely that the incremental change in 13C as 12C increases is similar
in the two species. We re-evaluated these studies to determine whether scaling relationships
might explain why large plants differ from small plants and why the sign of the
relationship between ratios and their denominators differ. Total 13C and total 12C for
individual points were derived from the original dry weight and D13C values. Total carbon
concentrations of 42% dry matter for peanut [30] and 50% for wheat were used to
make the calculations. However, using any realistic estimate of total carbon concentration
(40–60%) does not affect the conclusions presented in Table 2.

In this example, plots of 12C vs. 13C with a non-zero y-intercept; log10
12C vs. log10

13C
plots with a slope not equal to 1.0; or 12C vs. 13C : 12C ratio plots are statistically
significant. This suggests that scaling occurs. As discussed below, points for peanut
cultivars all fall on the same allometric 12C vs. 13C regression line. To fully characterize
scaling relationships in the wheat, replicate data from individual cultivar subpopulations
would be required. However, the data does suggest that the mean isotopic ratios are
related to denominator size in both species. The r2 values in Table 2 are again
exceptionally high (1.0 when rounded to 5 decimal places).

There is a significant relationship between 13C : 12C ratios and total 12C for both plant
types. Large wheat plants (with more total isotope) appear to discriminate against the
heavy isotope, while large peanut plants appear to prefer the heavy isotope relative to the
smaller plants. The largest peanut cultivar (cultivar 3) has significantly higher 13C : 12C
ratios than the other two cultivars ( p5 0.0083 compared to cultivar 1 and p5 0.016
compared to cultivar 2).
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Interpretations of ratio-based isotopic expressions are confounded. Based on average
�13C, researchers have no way of knowing if large plants accumulate more, less or the same
13C when evaluated on an equal-size basis than small plants. Apparent differences could be
simply associated with plant size differences. Evaluating the relationship between total 12C
vs. 13C or log10

12C vs. log10
13C as 12C increases provides a better evaluation of how the

accumulation of a rare isotope changes with crop type or cultivar than an isotopic ratio.
Conducting an ANCOVA on 13C with 12C as a covariate (or log10

13C with log10
12C as a

covariate) avoids biases that occur due to different plant size.
Scaling may explain the differences in isotopic ratios between large plants and small

plants. The two plant types (peanut and wheat) produce parallel regression lines for the
12C vs. total 13C relationships. The slopes are not significantly different (Table 2).
However, the two linear equations have significantly different y-intercepts. We get
opposite conclusions when comparing large and small plants within the peanut and wheat
cultivars only because one study produces a positive y-intercept (with corresponding log-
log slope less than 1.0) while the other produces a negative y-intercept (with corresponding
log-log slope greater than 1.0). The two species mathematically scale in opposite
directions.

An ANCOVA can be conducted for peanut. Whether either linear or log-log models
are used, covariance analyses suggest differences among peanut cultivars are indirect and
related to total isotope composition rather than due to other causes. The probability level
for 13C cultivar differences when 12C is a covariate is 0.13; differences among cultivars also
change. The cultivar with the smallest original 13C : 12C ratio has the greatest covariate
adjusted 13C accumulation. If the log10

13C is evaluated with log10
12C as a covariate, the p

value for cultivar differences is 0.21 with a covariate adjusted 13C order among cultivars
that is similar to the untransformed ANCOVA adjusted cultivar order. In all cases there
are no significant treatment� covariate interactions.

Although changes in isotopic ratio are dependent on the fact that the two plant systems
can be described by equations that scale in opposite directions, there is subtle curvature in
the apparent linear relationships. The relationship between 12C and 13C is described by
concave polynomial equations for both peanut and wheat (p values for x2 term of 0.05 and
0.12 respectively). The derivative (d13C/d12C) for both plant types increases with 12C (data
not shown) even though the peanut 13C : 12C ratio increases with increasing 12C while the
wheat 13C : 12C ratio declines with increasing 12C. The slope might change because size
differences are related to increased photosynthesis (or some other mechanism) that results
in preferential uptake of 12C. However, unless slopes are evaluated, this possibility remains
undetected. Intercept-related scaling effects play a much greater role with respect to how
ratios differ than the subtle curvature in the data. Using a curvilinear function in an
ANCOVA does not change the results presented above (data not shown).

We conclude that, although 13C : 12C ratios change in opposite directions as size
(and total 12C) increases, the incremental change in 13C as 12C increases could be similar in
the two species. Peanut cultivars do not differ when evaluated on a similar-size basis
and replicate points fall on the same allometric total 12C vs. total 13C regression line.
For the data that we have, mean values for wheat cultivars and all replicate points for
peanut fall on parallel allometric regression lines. Whether or not replicate points for
wheat cultivars fall on the same or different regression lines could not be determined.
Although wheat cultivars generally have more 13C than peanut cultivars on an equal 12C
basis, any incremental change differences in 13C as 12C increases in the two genera
remain unknown.
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3.4 Effects due to both treatment and scaling for the accumulation of 15N relative to 14N

In this example, we demonstrate how scaling could either obscure or magnify treatment

differences in an isotopic ratio. Statistically significant relationships between 15N : 14N
ratio and fresh weight for Dover sole (Microstomus pacificus) grown in polluted and

unpolluted costal sites are presented in Figure 3a. Data were derived from � values from
Rau et al. [24]. The 15N : 14N ratios shown in the figure are algebraically equivalent to �
values of 8.7–11.4 and 11.6–15.5 for respective polluted and non-polluted sites. Estimates

for total 14N derived from moisture content and N concentration estimates are shown in
parenthesis. Isotopic ratios when analyzed with or without dry weight as a covariate are
statistically different ( p5 0.01) for the two sites. The Log10

14N vs. log10
15N and 14N

vs.15N regression lines are not statistically different for polluted and unpolluted sites, but
even with only five points for each regression line, slope and y-intercept differences for the

linear equations representing the two sites approach statistical significance (14N vs. 15N
slope differences; p5 0.09). However, in an ANCOVA analysis of 15N with 14N as a
covariate there is a treatment� 14N interactions ( p5 0.009). The change in 15N as 14N

increases is different between the two conditions. As would be expected if food sources
differ, the non-polluted site has both higher ratios and an apparently steeper slope.

Figure 3. Scaling relationships for 15N and 14N within food source treatments. (a) Relationship
between 15N : 14N ratio and fresh weight for Dover sole (Microstomus pacificus) grown in polluted
(h) and unpolluted (i) costal sites. Values for total 14N that were derived from water content and
N concentration estimates are shown in parenthesis. Data derived from � values from Rau et al. [24].
(b) The same data presented in a, but the 15N : 14N ratio has been expressed as a percentage of
maximum delta value for each individual costal site.
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Since fish sizes at both sites are similar, the scaling does not interfere with a ratio-based
assessment of isotopic differences. However, if a small fish (10g) from the unpolluted site
were compared to a large fish (70 g) from the polluted site, scaling would obscure the
isotopic discrimination that is revealed in ratio-based expressions. If a large fish from the
unpolluted site were compared to a small fish from the polluted site, scaling would magnify
differences in the isotopic ratio. Rau et al. [24] are correct in suggesting that growth,
animal size and metabolism differences can likely alter isotopic composition.

In Figure 3b, the 15N : 14N ratio has been expressed as a percentage of maximum delta
value for each individual coastal site. Again, the data clearly show that isotopic ratios scale
with body size. The x2 term for a polynomial fit of the relationship between 15N and 14N
was not statistically significant for the polluted or unpolluted data sets.

3.5 Scaling complicates 15N interpretation for different trophic levels

The following data demonstrate why total isotope, although rarely measured in trophic
level studies, should be statistically evaluated. When mean estimates of common isotope
(x-axis) are plotted against mean estimates of rare isotope (y-axis) for trophic level studies,
a concave curvilinear function with a positive scaling exponent is expected. This is not
surprising. The isotopic ratio increases with body size as bigger animals with more total
isotope eat bigger prey with larger rare isotope : common isotope ratios. It is probably not
realistic to assume that the collection of points from which the mean values are determined
is isometric within a species. This would imply that scaling is isometric within a species
while it is allometric between them [16]. Without replicate total common and rare isotope
data, it is impossible to determine if points for different species will fall on common or
different allometric regression lines. Thus one cannot detect isotopic differences among
trophic levels that are independent of the size of the animals being evaluated.

Jennings et al. [18] were concerned about size-related factors that alter isotopic
composition and present sufficient data for a scaling analysis. Figure 4a displays the
animal size vs. �15N relationships for three (zooplankton, small fish, large fish) of five
faunal groups from one of their original figures. The mean �15N value for the zooplankton
differs from both small and large fish ( p5 0.0001). Although large fish tend to have
higher �15N than small fish, this difference is not statistically significant ( p5 0.265).
However, as discussed below, differences or lack of differences in isotopic ratio do not
necessarily provide information on how different sized faunal groups accumulate 15N.

When plotted on a linear scale (Figures 4b and 4c) scaling within each faunal group is
clearly apparent. This might be expected if increasing animal size is associated with
increasing prey size, thus both increasing animal size and increasing �15N reflect changing
trophic levels. When the differences in N :C ratio (that were presented in the original
reference) and realistic assumptions from the literature for C concentration for the three
faunal groups are evaluated, log-log and traditional non-transformed regressions can be
evaluated (Table 3). Scaling is clearly apparent. Negative y-intercepts in the non-transformed
data were statistically significant for the zooplankton and negative y-intercepts approach
statistical significance ( p5 0.1) for both fish species. For all three faunal groups, log-log
scaling exponents were statistically different than 1.0.

As was the case in Figure 2a and Table 2, r2 values presented in Table 3 are
exceptionally high (1.0 when rounded to 8 decimal places). Since 15N isotopic ratios vary
over an even smaller range than 13C isotopic ratios, and animal size varies more (several
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orders of magnitude in some cases) than in the plant example (Table 2), r2 values are even
higher than what was previously reported.

The 95% confidence intervals for the log-log slopes for zooplankton overlap with
both small and large fish. However, confidence levels for log-log slopes for small and

Figure 4. Trophic level scaling relationships for 15N and 14N. (a) Relationship between �15N and
body mass (log10M, midpoints of wet mass classes) for the sampled faunal groups (h) zooplankton,
(i) small fish and (*) large fish. (b) Relationship between �15N and body mass for zooplankton. (c)
Relationship between �15N and body mass for (i) small fish and (*) large fish. Data derived from
Jennings et al. [18].
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large fish differ. Small fish have a larger log-log slope and a similar y-intercept than large
fish, suggesting that they would accumulate more 15N on an equal total isotope basis.
There is statistically detectable concave curvature (significant positive x2 terms for
polynomial best fit equations) for the raw data for fish shown in Table 3. For the
non-transformed small and large fish, derivatives increase with increasing 14N (x2 p
values¼ 0.0165 and 0.00116 respectively for small and large fish). If the data are fit to a
power function with an intercept term, scaling exponents become larger with greater
statistical significance than the simpler log-log equations for the fish in Table 3. The best-
fit polynomial and intercept inclusive power functions both suggest that within a fish
group, there is indeed, a greater preference for 15N accumulation as size increases.

The significant scaling apparent in the log-log slopes (Table 3) for zooplankton is likely
due to positive y-intercepts. Log-log plots with slopes not equal to 1.0, in themselves, do
not necessarily suggest that nonlinear biological scaling occurs. An evaluation for
curvature in an original untransformed data set with either polynomial (significant x2

term) or intercept inclusive power functions (scaling exponent not equal to 1.0)
should accompany standard evaluations of log-log slopes. Both polynomial best fit
(x2 p value5 0.589) equations and scaling exponents for intercept inclusive power
functions that are not significantly different than 1 suggest a lack of curvature in the
zooplankton data.

For zooplankton, the fact that �15N increases over time [18] suggests that data could
come from a perturbed system where the �15N of the primary food source has increased. In
this perturbed system, smaller animals with faster metabolism could approach a new
equilibrium faster than larger animals. Under these conditions, metabolism based scaling
would cause small animals to have larger �15N, while trophic level based scaling would
cause small animals to have a lower �15N. Other possible mechanisms could also explain a
linear total 14N vs. total 15N function that has a negative y-intercept.

The relationship for zooplankton shown in Figure 3b is difficult to interpret. Even
though the ratio changes, there is no change (14N vs. 15N slope is constant) in how 15N
incrementally accumulates relative to 14N as body size increases. The significant
differences suggested by standard deviations for �15N that do not overlap (Jennings
et al. 2008) for zooplankton in different size categories do not necessarily reflect differences
in how the 15N is accumulated as total isotope increases. Again it is unlikely that common
isotope vs. rare isotope relationships are isometric within a size category but allometric
between then. Without an analysis of replicate data for the individual zooplankton size
categories, we have no idea if isotopic ratios differ independent of size. Points could fall on
either the same or different allometric regression lines for the different assortment of
species that likely occur in the different size categories.

Comparing different-sized fish categories is also more complex than what the mean
�15N values suggest. Both the small fish and large fish have similar non-transformed slopes
(14N� fauna type interaction; p5 0.958), but the large fish have a more negative
y-intercept and significantly lower covariate adjusted 15N ( p5 0.03 after insignificant fish
size� total isotope interactions are removed from the model) than the small fish. Ratio-
based isotopic evaluations are misleading. Based on average �15N, a researcher would have
no way of knowing that the large fish accumulate less 15N when evaluated on an equal-14N
basis than the small fish. Scaling masks a treatment effect. If size were the only factor
contributing to trophic level differences, one would expect greater 15N : 14N ratios for
larger fish, while the two size categories would have similar 15N when total 14N is used as
a covariate in an ANCOVA.
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Regardless of the cause of observed scaling, evaluating changes in the slope for a plot
of total 14N vs. total 15N as body size increases and conducting an ANCOVA to evaluate
treatments with different amounts of total isotope will give a better measure of how the
accumulation of a rare isotope differs than an isotopic ratio.

3.6 Recognising confounded systems that produce a combination of difficult to separate
direct and indirect effects

We present global carbon data to demonstrate how changing conditions can induce scaling
effects that complicate the interpretation of other ongoing analyses. Unlike many less-
studied systems, both total isotope and ratio-based isotopic expressions are available.
Nothing we present alters isotopic global carbon interpretations. However, this example
demonstrates how slope analyses and an evaluation of curvature in common or total
isotope vs. rare isotope plots are useful tools in efforts to better understand isotopic data.

Since fossil fuels have an isotopic composition that is more depleted in 13C than the
atmosphere, increased fossil fuel consumption results in declining �13C values over time
[31,32]. Without complicating factors, carbon added to the atmosphere would have �13C
values that reflect fossil fuel input, which has varied from about �24 to �29 over the
industrial era [33]. However, discrimination among isotopes as CO2 is removed by
photosynthesis, different isotopic composition of the CO2 that is added from respiration
and oceanic interactions change the isotopic composition of added CO2 [31,32].

Past Keeling plot analyses from the Law Dome ice core suggest that the long-term
historic isotopic composition of added carbon in delta value equivalents is approximately
�13 to �14 [34]. If all the complicating factors are relatively constant over time, changes
in the rate of fossil fuel addition to the atmosphere might be revealed by evaluating slope
changes in total CO2 (or 12CO2) vs. 13CO2 plots. As the emission rate increases, the
isotopic composition of added CO2 would become more depleted. As the rate decreases
the isotopic composition would become more enriched.

As both the rate of fossil fuel emissions per year [35] and the �13C of the fuel source
increase [33], a plot of total CO2 vs. 13CO2 in the atmosphere (as inferred from
Antarctic ice core and firn samples) can be generally described by a convex polynomial
function. The fact that 13CO2 and total CO2 co-vary in a simple-to-parameterise way
simply means that the system has a relatively constant set of sources and sinks. The
progressive slope change can be seen in the equations presented in Table 4 for data
collected by Francey et al. [27] and Friedli et al. [28]. A changing environment with
increasing CO2 concentration eventually creates a scaling system where linear or log-log
plots of total CO2 vs. 13CO2 statistically scale. Therefore after 1905, �13C values can
decline regardless of whether the isotopic composition of the CO2 being added to the
atmosphere becomes slightly more enriched, less enriched, or remains constant.

An example of a convex polynomial is shown in Table 5 for 1940–1978. However, there
is an anomaly for the time period from 1978 to 1993 (Table 5). The ice core and firn data
can be described by a statistically significant concave polynomial regression equation
during this short recent time interval, suggesting that the CO2 being added to atmosphere
was becoming more rather than less enriched in 13C.

The d 13CO2/d total CO2 derivative also increases during this time (data not shown).
The concave equation describes the data even though the atmosphere as a whole
is becoming more depleted. A similar concave polynomial equation (also presented
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in Table 5) is revealed when Point Barrow air samples [25,26] are evaluated for 1983–1997.
This is in agreement with the conclusions of Gruber et al. [36] where �13C changes for
1980–1995 in both the atmosphere and the ocean are attributable to a deceleration in the
growth of anthropogenic CO2 emissions after 1979. An increasing slope could also be
caused by decreases in CO2 inputs from terrestrial respiration.

A changing slope (implied by the polynomial equations in Table 5) or derivative is
clearly more revealing than changes in �13C for 1978–1997. Since they more clearly reveal
changes in source-sink relationships, slopes or derivatives will better represent system
change in a scaling system than �13C. Scaling effects could also complicate the
interpretation of the seasonal oscillation in �13C values that occur in the Northern
hemisphere.

Seasonal oscillations are presented in Figure 5a [25] in which the long term decrease of
13CO2 : total CO2 ratios has been removed. These oscillations can be statistically associated
with changes in respiration and photosynthesis. A statistically significant convex
polynomial equation describes the combined data pooled across all months
(13CO2¼�2.080*10

�6 [total CO2]
2
þ 0.01229 [total CO2]� 0.1758; r2¼ 0.999989; x2 term

significant p5 0.0008). As CO2 increases when respiration is dominant, CO2 becomes
more depleted; as CO2 declines with increased photosynthesis and levels return to their
minimum, CO2 becomes more enriched.

In a scaling system, the addition to or removal of CO2 in the atmosphere will change �13C
values regardless of whether or not these additions are associated with changes in the
isotopic composition of the CO2 that is added or removed. Therefore, we would expect part
of the magnitude of the observed oscillation is attributable to a scaling effect. Modelled
results in Figure 5b show both the total oscillation observed and the scaling effect.

The two curves in Figure 5b were constructed by using the year-adjusted values for
CO2 concentrations presented by the original authors [25,26]. Values for the modelled total
13CO2 : total CO2 ratio oscillation were derived by assuming that the isotopic composition
of added or removed CO2 was defined by the polynomial best-fit equation (presented
above) that described the relationship between total CO2 and

13CO2 for the year-adjusted
monthly data over the 15-year time period.

Values for the scaling effects were derived by assuming that the isotopic composition of
added or removed CO2 remained unchanged (a delta value equivalent of �14) as CO2

increased or decreased and represent a stable source for added CO2 over the 15-year
period. Our model where the isotopic composition of the CO2 added to and removed from
the atmosphere are identical is not necessarily realistic. However, the simulation does
demonstrate how unchanging isotopic content of additions and losses will lead to changes
in an isotopic ratio. Our value of �14 is derived from the slope of the 12CO2 vs.

13CO2 plot
for the 15-year time period when only Feb, March and April data were evaluated. By
restricting data to these relatively stable times, the equation is not affected by annual
oscillations of the amount of CO2 and its isotopic content.

Both the real and artificial data have similar oscillation magnitudes for the 13CO2 : total
CO2 ratio. Most of the change observed in Figure 5a is due to a change in the composition
of the CO2 being added or removed, but a scaling factor also plays a role (Figure 4b).
In many systems, changes in a ratio can be due to a combination of treatment and scaling
effects.

In Figure 5c, modelled results show theoretical patterns of change in the amplitude of
cyclic seasonal 13C isotopic composition in the atmosphere from 1840–1997. A model was
used because historic data over the entire time period is not available and a variety of

22 T.L. Righetti et al.

D
ow

nl
oa

de
d 

by
 [

Jo
hn

 L
am

br
in

os
] 

at
 1

8:
01

 1
9 

O
ct

ob
er

 2
01

1 



factors that alter oscillation patterns may obscure a scaling effect. However, it is important
to recognize the underling scaling effect that must mathematically exist.

These data were produced by introducing the average oscillation of CO2 found in Point
Barrow air samples over a 15-year period [25,26] into a historic record derived from

Figure 5. Modelled and observed cyclic seasonal 13C isotopic composition for Point Barrow, Alaska
air samples for the late 20th century and modelled long-term changes in the cyclic rise and fall of 13C
isotopic composition of the atmosphere from 1840–1997. (a) Seasonal changes for 13CO2 : total CO2

ratio after removing trends for long-term change. Data were created by using spline-smoothed, year-
adjusted data. (b) Modelled annual change that would occur if the cyclic rise and fall in CO2 added
to the atmosphere had no change (in bold) in CO2 source (�

13C¼�14) and modelled annual change
that would occur if the CO2 added to or removed from the atmosphere was subject to source changes
associated with respiratory additions of depleted 13C and selective removal of 12C by photosynthesis
(standard line). (c) Modelled change in the amplitude (___ maximum value; - - - - minimum value)
of cyclic seasonal 13C isotopic composition of the atmosphere from 1840–1997. Data after Keeling
et al. [25], Keeling et al. [26], Francey et al. [27], and Friedli et al. [28].
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Antarctic ice core and firn data [27,28]. Once again, the isotopic composition of cyclic
additions or removal of CO2 was defined by the polynomial best-fit equation that
described the relationship between total CO2 and

13CO2 in the Point Barrow data set for
the year-adjusted data over a 15-year time period. The amplitude decreases by 27%
between 1840 and 1997 and by 19% between 1950 and 1997. Similar trends were not
apparent in the amplitudes of either total CO2 or 13CO2 in the artificial data set. The
amplitudes only declined by about 2% in the artificial data for total CO2 or

13CO2 between
1840 and 1997.

The model implies that, even if the amount of CO2 that is cyclically added to and
removed from the atmosphere remains constant, and even if the magnitude of the cyclic
changes in isotopic composition of the CO2 that is added or removed also remains
constant, scaling effects will cause a decrease in cyclic 13C : total C ratio amplitudes. When
a ratio-based expression is used to quantify system change, the long-term additions of
fossil fuel derived CO2 dampen the apparent short-term oscillation attributed to changes in
the isotopic composition of the CO2 that is added to or removed from the atmosphere.
Scaling effects could make it more difficult to detect an increase in the amplitude of cyclic
isotopic change that could occur in response to changes in environmental conditions
associated with fossil fuel additions. Trends in Figure 5 are similar if 13CO2 :

12CO2 ratios,
rather than 13CO2 : total CO2 ratios, are plotted on the y-axes (data not shown).

Our fixed-composition flux iteration models reflect simple mass balance. Atmospheric
CO2 has a �13C of about �7, so adding or removing carbon with a �14 �13C value is
necessarily going to make the isotopic ratio co-vary with CO2 concentration. As total pool
size increases the magnitude of oscillations will decrease. In global carbon research both
total carbon and isotopic ratio changes are well studied. Without the knowledge of the
total CO2 change, fluctuating isotopic ratios would be difficult to interpret. In many other
systems, changes in isotopic ratio are evaluated without detailed evaluations of total
isotope change. Evaluating total isotope and observing how derivatives change is a
relatively simple technique that is much more revealing than studying ratio changes
independent of total isotope.

Seasonal, diurnal or millennial patterns in ratio-based isotopic data are often evaluated
in biological and ecological studies, but the possibility that either known or unknown
factors can induce scaling effects is generally ignored. This is unfortunate since, as
demonstrated both here and in the supplementary document [16], scaling effects can
theoretically dampen, enhance or reverse oscillation patterns. Oscillation patterns (and
other � value changes over time) should not be evaluated without knowledge of total
isotope change.

3.7 Using derivatives to estimate cyclic changes in the isotopic composition of
atmospheric CO2

A Keeling plot [20] where �13C is plotted against 1/total CO2, is often used to estimate the
isotopic composition (y-intercept) of the respired CO2 added to the atmosphere [34,37,38].
We advocate using derivatives as a better way to evaluate changes in the isotopic
composition of substances added to or removed from a scaling system.

Keeling plots (in which the long-term, fossil fuel induced decrease of 13CO2 : total CO2

ratios has been removed) for Point Barrow data suggest that the isotopic composition of
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CO2 added to the atmosphere by terrestrial respiration has a �13C value of about
�25 [34,37]. A similar approach has been applied to other data sets producing �13C
values for terrestrially respired CO2 that range from �22.79 to �27.40 [38].
However, Nickerson and Risk [39] have suggested that Keeling plots are non-linear,
violating key assumptions of the technique. Linear relationships are not expected since
the isotopic composition of CO2 added to or removed from the atmosphere changes
over time.

The d 13CO2/d total CO2 derivatives for both increasing and decreasing phases of CO2

concentration are shown in Figure 6. When CO2 concentration is approaching its highest
level as respiration becomes dominate, the source becomes more depleted. The most
depleted derivative occurs in the dark when photosynthesis is not possible. During
photosynthesis, plants preferentially assimilate 12CO2, resulting in an increase of
13CO2 :

12CO2 or
13CO2 : total CO2 ratios remaining in the atmosphere. The most enriched

derivative occurs in August when CO2 concentrations have declined to their lowest level
and photosynthesis is dominant. Most of the derivative change occurs during a very
narrow range of total CO2 values (330–335 mLL�1), slightly before and after the time
of maximum CO2 assimilation, which corresponds to the lowest CO2 concentration.
Respiration still occurs as photosynthesis becomes more important, thus the derivative
represents a combination of source and sink effects as total net CO2 concentrations
decline.

Keeling plots have expanded beyond their initial global carbon application. The
approach has been applied to quantify the �13C of CO2 being respired by hummingbirds
[40] and lakes [41]. This indirect method of approximating the slope should only be used if
the underlying total or common isotope vs. rare isotope relationships is known to be
linear. Best-fit linear relationships with exceptionally high r2 values may miss subtle, but
important, curvature.

Figure 6. Derivatives (d 13CO2/d total CO2) for Point Barrow, Alaska air samples for the late 20th
century after removing trends for long-term change. Derivatives for all months (- - - -), May to
August (_ _ _; in bold); when photosynthesis becomes dominant and CO2 decreased and August to
April (___; in bold); when respiration becomes dominant and CO2 increased are shown. Arrows
indicate whether CO2 is increasing (!) or decreasing (- - -!) as the derivative changes. Data in
parenthesis are approximate �15N values derived from minimum and maximum d 13CO2/d total CO2

values. Numeric derivatives were estimated using a cubic equation with 7 knots. Data after Keeling
et al. [25] and Keeling et al. [26].
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4. Conclusions

These examples demonstrate that interpreting statistical differences in ratio-based isotopic
expressions can be fraught with difficulties. Regardless of the cause, hidden scaling can
confound analysis of treatment effects. Treatments can induce scaling or a ubiquitous
scaling effect can create apparent differences among treatments. One should not assume
that relationships between isotopic composition and total isotope are isometric. In some
situations it may be difficult to untangle a combination of ubiquitous scaling, treatment-
induced scaling and direct treatment effects.

Interpreting observed differences in isotopic ratios requires an evaluation to determine
whether treatments directly affect how a rare isotope is accumulated or are associated with
differences in denominator size. By simply recording total elemental content, standard
statistical procedures that evaluate changes in slopes or derivatives can be combined with
an ANCOVA to better evaluate isotopic data. An ANCOVA on either the numerator with
the denominator as a covariate; or the log10 of the numerator with the log10 of the
denominator as a covariate is a well established alternative to statistically evaluating ratios
that scale. Slope differences or derivatives are also more revealing than changes in isotopic
ratios and better represent system change in a scaling system. If effects are direct, points
for different treatments fall on different linear and log-log (total isotope vs. rare isotope or
common isotope vs. rare isotope) regression lines.
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