Biblio
Found 58 results
Author Title Type [ Year] Filters: Keyword is Embryo, Nonmammalian and Author is Tanguay, Robert L [Clear All Filters]
“Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish.”, Toxicol Appl Pharmacol, vol. 272, no. 3, pp. 656-70, 2013.
, “Sulfidation of silver nanoparticles: natural antidote to their toxicity.”, Environ Sci Technol, vol. 47, no. 23, pp. 13440-8, 2013.
, “Surface functionalities of gold nanoparticles impact embryonic gene expression responses.”, Nanotoxicology, vol. 7, no. 2, pp. 192-201, 2013.
, “AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish.”, PLoS One, vol. 7, no. 1, p. e29346, 2012.
, “Alternate glucocorticoid receptor ligand binding structures influence outcomes in an in vivo tissue regeneration model.”, Comp Biochem Physiol C Toxicol Pharmacol, vol. 156, no. 2, pp. 121-9, 2012.
, “Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish.”, Toxicology, vol. 302, no. 2-3, pp. 129-39, 2012.
, “Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter.”, Sci Total Environ, vol. 426, pp. 423-9, 2012.
, “Investigating the impact of chronic atrazine exposure on sexual development in zebrafish.”, Birth Defects Res B Dev Reprod Toxicol, vol. 95, no. 4, pp. 276-88, 2012.
, “Media ionic strength impacts embryonic responses to engineered nanoparticle exposure.”, Nanotoxicology, vol. 6, no. 7, pp. 691-9, 2012.
, “MicroRNAs control neurobehavioral development and function in zebrafish.”, FASEB J, vol. 26, no. 4, pp. 1452-61, 2012.
, “Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish.”, Toxicology, vol. 291, no. 1-3, pp. 83-92, 2012.
, “Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles.”, Comp Biochem Physiol C Toxicol Pharmacol, vol. 155, no. 2, pp. 269-74, 2012.
, “Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality.”, J Nutr Biochem, vol. 23, no. 5, pp. 478-86, 2012.
, “Zinc transporter expression in zebrafish (Danio rerio) during development.”, Comp Biochem Physiol C Toxicol Pharmacol, vol. 155, no. 1, pp. 26-32, 2012.
, “Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring.”, Environ Toxicol Chem, vol. 30, no. 9, pp. 2073-80, 2011.
, “Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish.”, Arch Toxicol, vol. 85, no. 7, pp. 787-98, 2011.
, “Introduction to zebrafish: current discoveries and emerging technologies for neurobehavioral toxicology and teratology.”, Neurotoxicol Teratol, vol. 33, no. 6, p. 607, 2011.
, “Exploiting lipid-free tubing passive samplers and embryonic zebrafish to link site specific contaminant mixtures to biological responses.”, Chemosphere, vol. 79, no. 1, pp. 1-7, 2010.
, “Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS).”, Aquat Toxicol, vol. 98, no. 2, pp. 139-47, 2010.
, “Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration.”, J Biol Chem, vol. 284, no. 48, pp. 33642-53, 2009.
, “Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development.”, Aquat Toxicol, vol. 95, no. 4, pp. 355-61, 2009.
, “Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish.”, Toxicol Appl Pharmacol, vol. 237, no. 1, pp. 29-40, 2009.
, “Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.”, Toxicol Appl Pharmacol, vol. 229, no. 1, pp. 44-55, 2008.
, “Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamate sodium metam (NaM).”, Aquat Toxicol, vol. 90, no. 2, pp. 121-7, 2008.
, “Dithiocarbamates have a common toxic effect on zebrafish body axis formation.”, Toxicol Appl Pharmacol, vol. 216, no. 1, pp. 55-68, 2006.
,