Biblio
“Alternate glucocorticoid receptor ligand binding structures influence outcomes in an in vivo tissue regeneration model.”, Comp Biochem Physiol C Toxicol Pharmacol, vol. 156, no. 2, pp. 121-9, 2012.
, “t⁴ workshop report. Nanotoxicology: "the end of the beginning" - signs on the roadmap to a strategy for assuring the safe application and use of nanomaterials.”, ALTEX, vol. 28, no. 3, pp. 236-41, 2011.
, “Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development.”, Aquat Toxicol, vol. 95, no. 4, pp. 355-61, 2009.
, “Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine.”, J Neurosci, vol. 22, no. 24, pp. 10731-41, 2002.
, “MicroRNAs control neurobehavioral development and function in zebrafish.”, FASEB J, vol. 26, no. 4, pp. 1452-61, 2012.
, “Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish - a mini-review.”, Gerontology, vol. 56, no. 2, pp. 231-40, 2010.
, “Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor.”, Biochim Biophys Acta, vol. 1444, no. 1, pp. 35-48, 1999.
, “Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions.”, Biochim Biophys Acta, vol. 1494, no. 1-2, pp. 117-28, 2000.
, “An interview with Robert Tanguay, Ph.D. Interviewed by Vicki Glaser.”, Zebrafish, vol. 4, no. 3, pp. 163-8, 2007.
, “Analysis of ethanol developmental toxicity in zebrafish.”, Methods Mol Biol, vol. 447, pp. 63-74, 2008.
, “Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions.”, Toxicol Appl Pharmacol, vol. 212, no. 1, pp. 24-34, 2006.
, “Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamate sodium metam (NaM).”, Aquat Toxicol, vol. 90, no. 2, pp. 121-7, 2008.
, “Bioinformatics Resource Manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools.”, BMC Bioinformatics, vol. 13, p. 311, 2012.
, “Exposure to sodium metam during zebrafish somitogenesis results in early transcriptional indicators of the ensuing neuronal and muscular dysfunction.”, Toxicol Sci, vol. 106, no. 1, pp. 103-12, 2008.
, “Dithiocarbamates have a common toxic effect on zebrafish body axis formation.”, Toxicol Appl Pharmacol, vol. 216, no. 1, pp. 55-68, 2006.
, “Multidimensional in vivo hazard assessment using zebrafish.”, Toxicol Sci, vol. 137, no. 1, pp. 212-33, 2014.
, “Evaluation of Embryotoxicity Using the Zebrafish Model.”, Methods Mol Biol, 2017.
, “Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish.”, Environ Pollut, vol. 218, pp. 1089-1093, 2016.
, “Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish.”, Arch Toxicol, vol. 85, no. 7, pp. 787-98, 2011.
, “Media ionic strength impacts embryonic responses to engineered nanoparticle exposure.”, Nanotoxicology, vol. 6, no. 7, pp. 691-9, 2012.
, “A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants.”, Neurotoxicology, vol. 43, pp. 134-142, 2014.
, “Optimizing multi-dimensional high throughput screening using zebrafish.”, Reprod Toxicol, vol. 65, pp. 139-147, 2016.
, “Surface functionalities of gold nanoparticles impact embryonic gene expression responses.”, Nanotoxicology, vol. 7, no. 2, pp. 192-201, 2013.
, “Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles.”, Comp Biochem Physiol C Toxicol Pharmacol, vol. 155, no. 2, pp. 269-74, 2012.
, “Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.”, Toxicol Appl Pharmacol, vol. 229, no. 1, pp. 44-55, 2008.
,