
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Predictive modeling and mapping sage grouse (Centrocercus
urophasianus) nesting habitat using Maximum Entropy and a
long-term dataset from Southern Oregon

Andrew C. Yosta,⁎, Steven L. Petersenb, Michael Greggc, Richard Millerd

aOregon Department of Forestry, 2600 State St., Salem OR 97310, United States
bDepartment of Plant and Wildlife Sciences, 275 WIDB, Brigham Young University, Provo, UT 84602, United States
cU.S. Fish and Wildlife Service, Mid-Columbia River NWR Complex, 64 Maple St., Burbank, WA 99323, United States
dDepartment of Rangeland Ecology and Management, 202 Strand Ag Hall, Oregon State University, Corvallis, OR 97331-2218, United States

A R T I C L E D A T A A B S T R A C T

Article history:
Received 5 March 2008
Received in revised form
12 August 2008
Accepted 18 August 2008

Predictive modeling and mapping based on the quantitative relationships between a species
and the biophysical features (predictor variables) of the ecosystem in which it occurs can
provide fundamental information for developing sustainable resourcemanagementpolicies for
species and ecosystems. To createmanagement strategieswith the goal of sustaining a species
such as sage grouse (Centrocercus urophasianus), whose distribution throughout North America
has declined by approximately 50%, landmanagement agencies need to know what attributes
of the range they now inhabit will keep populations sustainable and which attributes attract
disproportionate levels of use within a home range. The objectives of this study were to
1) quantify the relationships between sage grouse nest-site locations and a set of associated
biophysicalattributesusingMaximumEntropy, 2) find thebest subsetofpredictor variables that
explain the data adequately, 3) create quantitative sage grouse distributionmaps representing
the relative likelihood of nest-site habitat based on those relationships, and 3) evaluate the
implications of the results for futuremanagement of sage grouse. Nest-site location data from
1995 to2003were collected aspartof a long-term researchprogramonsagegrouse reproductive
ecologyatHartMountainNationalAntelopeRefuge.Twotypesofmodelswerecreated: 1)witha
set of predictor variables derived from digital elevation models, a field-validated vegetation
classification, and UTM coordinates and 2) with the same predictors and UTM coordinates
excluded. East UTM emerged as themost important predictor variable in the first type ofmodel
followed by the vegetation classificationwhichwas themost important predictor in the second
type ofmodel. The average training gain from tenmodeling runsusing all presence records and
randomized background points was used to select the best subset of predictors. A predictive
map of sage grousenest-site habitat created from theapplication of themodel to the study area
showed strong overlap between model predictions and nest-site locations.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the quantitative relationships between a
species and the biophysical features of the ecosystem in

which it occurs is fundamental when developing a sustainable
resource management policy for that species and ecosystem.
Predictive modeling and mapping that is based on these
relationships forms an analytical foundation for informed
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conservation planning, mapping patterns of biodiversity,
detecting distributional changes from monitoring data, and
quantifying how variation in species performance relates to
one or more controlling factors (Guisan and Hofer, 2003;
McCune, 2006; Phillips et al., 2006). For example, to create
management strategies with the goal of sustaining a species
such as sage grouse (Centrocercus urophasianus) whose dis-
tribution throughout North America has declined by approxi-
mately 50% (Aldridge and Brigham, 2002), land management
agencies need to know what portions of their former range
they now inhabit and what attributes make these areas
capable of population sustainability and attract dispropor-
tionate levels of use within a home range. This study tests the
application of predictive modeling and mapping to sage
grouse nesting habitat as amethod for generating information
valuable to a sustainable wildlife management policy.

Considerable work has been conducted evaluating habitat
attributes at the site level for sage grouse nesting (Aldridge
and Brigham, 2002; Gregg et al., 1994; Holloran et al., 2005;
Sveum et al., 1998), however, few studies have evaluated the
attributes at the landscape level. Gregg (2006) studied the
nutritional ecology of sage grouse productivity and chick
survival in Southern Oregon and northern Nevada. He found
forb consumption and high insect availability in Spring were
important for brood production and chick survival. The quality
and availability of nutritional resources, however, are not
distributed homogeneously across the landscape nor are the
optimal locations that sage grouse select for nesting. Even if
food resources were abundant and of high quality, selection of
a nest site that increases the chances of exposure to predation
or lethal climate conditions would have negative effects on
grouse productivity. Moreover, how the spatial distribution of
these and other attributes (i.e. topography) influence site
selection and distribution during pre-nesting, nesting, rearing,
or wintering at the landscape level is unknown. Gregg's (2006)
study produced an extensive database of sage grouse nest-site
locations over an eight-year time period sufficient for creating
predictive models of the relationships between nest-site
location and the biophysical attributes that might be impor-
tant in sage grouse productivity. Therefore, the purpose of this
study was to quantify the relative importance of the relation-
ships between nest-site locations with the biophysical fea-
tures that accompany those locations and then map the
spatial distribution of sage grouse nesting habitat.

Advancements in computer technology, statistical model-
ing, and Geographic Information Systems (GIS) software allow
the knowledge of animal/habitat relationships to be used for
predicting the geographic distribution of individual popula-
tions of wildlife species. Predictive species mapping was
defined by Franklin (1995) as predicting the distribution of a
particular species across a landscape from mapped environ-
mental variables. Predictive species mapping is founded in
ecological niche theory and gradient analysis and rests on the
premise that species distributions can be predicted from the
spatial distributions of environmental variables that correlate
with or control the occurrence of a plant or animal. Environ-
mental conditions at occurrence localities constitute samples
from a species' realized niche which is smaller than its
fundamental niche (Hutchinson, 1957; Phillips et al., 2006).
There are threemajor steps involved with predictivemodeling

and mapping: 1) collect species-level occurrence data and
associated biophysical attributes of the landscape, preferably
with a randomized sampling design, 2) build the models to
determine the best subset of predictors and their parameter
coefficients, and 3) application of the models to GIS data or
new sites to forecast probability of occurrence for unsampled
locations within the range of the study area.

Unlike vegetation monitoring datasets that typically con-
tain some sampling sites with a particular species present and
some where it was absent (Yost, 2008), wildlife sampling
datasets often consist of “presence-only” data. General pur-
pose statisticalmethods such as generalized linearmodels can
be used for presence/absence datasets but there are a limited
number of options available for presence-only datasets.
Recently, Phillips et al. (2004, 2006) introduced the use of the
Maximum Entropy (Maxent) method for modeling species
geographic distributions with presence-only data. Maxent is a
general purpose machine learning method for making predic-
tions or inferences from incomplete information. The method
estimates a target probability distribution across a study area
by finding the probability distribution that is closest to
uniform, or spread-out, subject to a set of constraints that
represent our incomplete information about the target dis-
tribution. The information available about the target distribu-
tion presents itself as a set of real-valued variables, or “features”
and the constraints are that the expected value of each feature
should match its empirical average (average value for a set of
sample points taken from the target distribution).Whenapplied
to presence-only distribution modeling, the pixels of the study
area make up the space on which the probability distribution is
defined, pixels with known species occurrence records consti-
tute the sample points, and the features are the predictor
variables that have digital geographic representation.

In addition to creating quantitative probability maps, the
shape of response function and strength of predictability for
each predictor variable can be graphically and quantitatively
evaluated. This provides the capability to discover which
gradients are most influential in predicting the likely occur-
rence of a particular species given they can be represented in a
geographic database. Knowledge of the strength and func-
tional response of species occurrences with each predictor
provides valuable information for identifyingwhich landscape
features should be the focus of management for habitat
sustainability.

The specific objectives of this study were to 1) quantify the
relationships between sage grouse nest-site locations and a
set of associated biophysical attributes with Maxent, 2) find
the best subset of predictor variables that explain the data
adequately, 3) create quantitative sage grouse distribution
maps representing the relative likelihood of nest-site habitat
based on those relationships, and 4) evaluate the implications
of the results for future management of sage grouse.

2. Materials and methods

2.1. Data and study area

Locations of sage grouse nest sites from 1995 to 2003 were
collected as part of a long-term research program on sage

376 E C O L O G I C A L I N F O R M A T I C S 3 ( 2 0 0 8 ) 3 7 5 – 3 8 6



Author's personal copy

grouse reproductive ecology at Hart Mountain National
Antelope Refuge (HMNAR) (Byrne, 2002; Coggins, 1998; Gregg,
2006). Nest sites were located by monitoring radiomarked
females and confirmed by visually observing hens on nests.
Universal Transverse Mercator (UTM) coordinates of nest sites
were obtained using Garmin hand-held GPS units. The nest-
site locations used for model building (n=240) were limited to
those that fell within the circular boundary (313 km2) of the
vegetation classification GIS layer.

The Antelope Refuge is located in the High Desert
Ecological province in southeast Oregon (Fig. 1). Climate,
soils, and vegetation across the study areas are characteristic
of those found in the High Desert, Klamath, and Humboldt
ecological provinces. Mean annual precipitations across most
of the two study areas range from 300 mm at lower elevations
increasing to N400 mm at higher elevations. Topographic
characteristic of this area includes mountains dissected by
deep canyons, rocky tablelands, and rolling plains ranging in
elevation from 4000 to 8000 ft. Primary plant alliances across
the two refuges consist of subspecies of sagebrush. Wyoming

big sagebrush (A. tridentata wyomingensis) (ARTRW) typically
forms extensive stands across the warm, dry lower elevations
of the refuge. Low sagebrush (A. arbuscula), (ARAR) forms large
patches across low and mid-elevation sites. Mountain big
sagebrush (Artemesia tridentata vaseyana) (ARTRVA) occupies
the higher, cooler, wetter portions of the refuge, forming a
complex matrix of patches with ARAR. Potential native
understories are composed of deep and shallow rooted
perennial tussock grasses and forbs as well as annual forbs.
Associated shrubs include bitterbrush (Purshia tridentata)
(PUTR), curl-leaf mountain mahogany (Cercocarpus ledifolius)
(CELE), snowberry (Symphoricarpos oreophilus), horsebrush
(Tetradymia spp.), and green (Chrysothamnus viscidiflorus) and
grey rabbitbrush (Ericameria nauseosa).

2.2. Predictive modeling with Maxent

The estimated Maxent probability distribution is exponential
in a weighted sum of environmental features divided by a
scaling constant (Eq. (1)) to ensure that the probability values

Fig. 1 –Hart Mountain National Wildlife Refuge, sage grouse nest-site locations, and circular boundary of the vegetation class
GIS layer.
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range from 0 to 1 and sum to 1. The Maxent probability
distribution takes the form

q� xð Þ= e��f xð Þ

Z�
ð1Þ

where λ is a vector of n real-valued coefficients or feature
weights, f denotes the vector of all n features, and Zλ is a
normalizing constant that ensures that qλ sums to 1. Maxent
is a maximum-likelihood method that generates the prob-
ability distribution over the pixels in a grid of the modeling
area. The program starts with a uniform distribution, and
performs a number of iterations, each of which increases the
probability of the sample locations for the species. The
probability is displayed in terms of “gain”, which is the log of
the number of grid cells minus the log loss (average of the
negative log probabilities of the sample locations). The gain
starts at zero (the gain of the uniform distribution), and
increases as the program increases the probabilities of the
sample locations. The gain increases iteration by iteration,
until the change from one iteration to the next falls below the
convergence threshold, or until maximum iterations have
been performed. The gain is a measure of the likelihood of the
samples. For example, if the gain is 2, it means that the
average sample likelihood is exp(2)≈7.4 times higher than that
of a random background pixel. The uniform distribution has
gain 0, so the gain can be interpreted as representing how
much better the distribution fits the sample points than the
uniform distribution does. The gain is closely related to
“deviance”, as used in generalized linear models (Phillips
et al., 2006). The sequential-update algorithm is guaranteed to
converge to the optimum probability distribution and because
the algorithm does not use randomness, the outputs are
deterministic.

To control over fitting, Maxent constrains the estimated
distribution so that the average value for a given predictor is
close to the empirical average (within empirical error bounds)
rather than equal to it. This smoothing procedure is called
regularization and users can alter the parameters to poten-
tially compensate for small sample sizes.

The Maxent distribution is calculated over the set of pixels
representing the study area that have data for all environ-
mental variables. However, if the number of pixels is very
large, processing time increases without a significant
improvement in modeling performance. For that reason,
when the number of pixels with data is larger than 10,000 a
random sample of 10,000 “background” pixels is used to
represent the variety of environmental conditions present in
the data. The Maxent distribution is then computed over the
union of the “background” pixels and the samples for the
species being modeled. Maxent's predictions for each analysis
cell can be represented as cumulative values representing as a
percentage the probability value for the current analysis cell
and all other cells with equal or lower probability. The cell
with a value of 100 is the most suitable, while cells close to 0
are the least suitable within the study area (Hernandez et al.,
2006). The formulaic description of the Maxent modeling
procedure applied to species occurrence data and a descrip-
tion of the Maxent program (version 2.0) used to perform the
modeling in this study is given by Phillips et al. (2006).

2.3. Predictor variables

The set of seven predictor variables included both east and
north Universal Transverse Mercator (UTM) location coordi-
nates for each nest-site location as recorded from a GPS unit.
Models with and without location variables can be compared
to assess the amount of spatial autocorrelation in the dataset
and evaluate the adequacy of the remaining ecological and
geophysical gradients at fitting the dataset. Prior to 1995 GPS
was not used to identify location coordinates. The error
associated with obtaining coordinates from topographic
maps would be too high for producing reliable models,
therefore, the nest sites located prior to 1995 were excluded
from the modeling dataset.

Elevation of sampled plots ranged from approximately
5233 to 7057 masl and was obtained from a 10 m digital
elevation model (DEM). Elevation for the area of analysis
ranged from 4584 to 7602 masl. Slope values ranged from 0° to
55° andwere also derived from the 10mDEMusing the surface
analysis slope function in ArcGIS® Spatial Analyst. Similarly,
aspect values for each nest site were obtained from the DEM
and categorized as flat, north (316° to 45°), east (46° to 135°),
south (136° to 225°), and west (226° to 315°).

A modified version of Iverson et al.'s (1997) Integrated
Moisture Index (IMI) was used as a relative rating to moisture
availability. The IMI was based on three topographic factors
(hillshade, flow accumulation, curvature) derived from the
10 m DEM of the study area. The hillshade GIS layer
contributed 50% to the IMI and was created with the
“hillshade” command in Arc/Info Grid (Environ, Sys. Res.
Inst., 2002). Landscape curvature, representing convexity and
concavity across the landscape, contributed 15% to the IMI and
was created with the “curvature” program in Arc/Info. Flow
accumulation contributed 35% to the IMI andwas createdwith
the “Flow accumulation” program.

The vegetation cover type associated with each nest site
was treated as a categorical predictor variable (Fig. 2). In a
separate analysis, cover types were delineated using remote

Fig. 2 –Amount of area, in thousands of hectares, within each
modeling subcategory for the vegetation classification GIS
layer. The number of nest sites from 1995 to 2003 for each
subcategory is listed above each bar.
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sensing and GIS. Plant community cover types were digitized
on-screen from high-resolution (1:24,000) aerial photographs
obtained from the United States Geological Survey (1 m
resolution Digital Orthophoto Quadrangles) and the United
States Department of Agriculture (USDA) Farm Service Agen-
cy's National Agriculture Imagery Program (NAIP, 2005)
images. Differences in community cover types were identified
using 1) distinct visual pattern recognized from the photo-
graphs, 2) plant association data obtained from field sample
plots, and 3) the topographic position, aspect, slope, and
elevation of individual cover types using digital elevation data.
Polygons of each cover type were digitized within a 10 km
radius (314 km2) centered at the site of highest courtship
activity (Fig. 1). An accuracy assessment was conducted
comparing the actual vegetation type to the predicted type
from 1500 randomly selected GIS locations that were visited
during Summer 2006. The Kappa statistic (0.82) was better
than substantial (Landis and Koch 1977) and the p-value for
the z-statistic (72.23) was less than 0.001 indicating that the
estimate was not due to chance alone.

2.4. Model building

The objective was to build a model with adequate perfor-
mance with the best subset of predictors. This objective was
accomplished by first building a GIS layer representing the
spatial distribution of likely nesting habitat and secondly by
identifying which variables, other than spatial coordinates,
were most important in predicting that habitat. Maxent's
jackknife test of variable importance can be used to evaluate
the relative strengths of each predictor variable. The training
gain is calculated for each variable alone and the drop in
training gain when the variable is omitted from the full model.
Therefore, to accomplish the first goal the modeling process
started with a full model that contained all seven predictor
variables. Then, the variable with the lowest decrease in the
average training gain when omitted was removed and the
remaining variables were used to build the model. For the
second goal the north and east UTM predictor variables were
omitted from the model building process to evaluate the
predictive capabilities of the remaining five predictors.

Model performance can be evaluated by setting aside a
subset of the presence records for training and use the
remaining records to test the resulting model. Performance
can vary depending upon the particular set of data withheld
from building the model for testing, therefore, 10 random
partitions of the presence records were made to assess the
average behavior of Maxent, following Phillips et al. (2006).
Each partition was created by randomly selecting 75% of the
total 204 presence records (n=153) and 10,000 random back-
ground pixels treated as negative instances as training data.
The remaining 25% of presence records (n=51) were used for
testing the model. The full set of presence records were used to
build the final reducedmodel to obtain the best estimate of the
species distribution and for creating a GIS probability distribu-
tion map.

Linear, quadratic, product, and hinge functions of the
predictor variables were selected for inclusion in the model.
Model settings that allow the algorithm to get close to
convergence are the maximum number of iterations, set to

1000, and the convergence threshold, set to 10− 5. The
regularization multiplier was set to the default value of one.

The Maxent models were also evaluated with the binomial
test to determine whether a model predicted the test localities
significantly better than random. The binomial test requires
that thresholds be used in order to convert continuous
predictions into suitable and unsuitable areas for sage grouse
nesting. After applying a threshold,model performance can be
investigated using the extrinsic omission rate, which is the
fraction of test localities that fall into pixels that are predicted
as not suitable for sage grouse, and the proportional predicted
area, which is the fraction of all the pixels that are predicted as
suitable. The p-values associated with a cumulative threshold
of one, five and ten are reported to show trend as the threshold
varied.

The receiver operating characteristic (ROC) analysiswas also
used to evaluate how well the Maxent model compared to
randomprediction. The area under the ROC function (AUC) is an
index of performance because it provides a single measure of
overall accuracy that is independent of any particular threshold
(Deleo, 1993). The ROC analysis assigns a threshold to the
modeled probability values by which sampling units are
classified as positive or negative for species presence. The
sensitivity for a particular threshold is the fraction of all positive
instances that are classified as present and specificity is the
fraction of all negative instances that are classified as not
present. A ROC plot is obtained by plotting all sensitivity values
(true positive fraction) on they axis against their equivalent (1—
specificity) values (false positive fraction) for all available
thresholds on the x axis. In other words, a point (x, y) in the
plot indicates that for some threshold, the classifier classifies a
fraction x of negative examples as positive and a fraction y of
positive examples as positive. Maxent treats the randomly
selected background pixels as negative instances and the pixels
in which the presence data fall as positive instances. The value
of the AUC is typically between 0.5 and 1.0. A value of 0.8
indicates that, for 80% of the time, a random selection from the
positive groupwill have a score greater than a randomselection

Fig. 3 –Training gain for each predictor variable alone (black
bars) and the drop in training gain when the variable is
removed from the full model (white bars).
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from the negative class and a value of 0.5 indicates themodel is
no better than a random prediction. However, when ROC
analysis is used on presence-only data, the maximum AUC is
less than one (Wiley et al., 2003), and is smaller for wider-
rangingspecies.ThemaximumachievableAUCcanbeshownto
be equal to 1−a/2,wherea is the fractionof pixels covered by the
species' distribution. A one-tailed Mann–Whitney-U statistic
was used to test the null hypothesis that the AUC for the
modeled predictions performed for the test data was not
significantly (α=0.05) different than random (Phillips et al.,
2006). Thesample for this testwas comprisedofn=10sensitivity
values (1 — test omission) at each 0.1 interval of the fractional
predicted area from the Maxent omission output.

The success of the model can also be evaluated by visually
inspecting how well the probability values in the output grid
fit with the points of the presence records. Output grids are
generated from application of the Maxent model to the set of
GIS grids that represent each predictor variable. A good model
will produce regions of high probability that cover themajority
of presence records and areas of low probability should
contain few to no presence points.

3. Results

3.1. The spatial model

The regularized training gain for the full model built with all
presence records was 0.842. From the jackknife test of variable
importance (Fig. 3) the single most important predictor
variable, in terms of the gain produced by a one-variable
model, was east UTM followed by vegetation class. North UTM
decreased the gain themost when it was omitted from the full
model, which suggests it contained the most information not
present in the other variables. These results indicate therewas
a measurable spatial constraint to the nest location data
within the modeling extent. Based on the amount of decrease
in model gain when a variable was omitted, the order of

variable removal for the spatial model was moisture index,
slope, aspect, elevation, vegetation, and north UTM.

From the binomial test the p-values from all partitions and
threshold categories were less than 0.005 indicating that
Maxent produced predictions that were significantly better
than random for all models regardless of the number of
predictor variables or cumulative threshold value (Table 1).
Binomial test p-values decreased considerably when the
threshold changed from one to ten indicating a higher
probability of rejecting the null hypothesis as threshold
increased to 10. When a binary prediction is desired, the
value of threshold to choose for establishing a boundary
between the range of probability values classified as suitable
habitat from those that are not is a critical issue and an area of
research that remains to be done. A good rule needs to be
developed to set a threshold operationally using intrinsic data
(Phillips, 2006; Hirzel et al., 2006).

From theMannWhitneyTest the averageAUCvalues (Fig. 4),
and the individual AUC values (n=10) from all partitions, for all
of the models, were statistically significant (p-valueb0.05)
indicating better-than-randomprediction (Table 1). The average
AUC values were relatively the same as model size decreased
but dropped slightly with the one-variable model containing
east UTM (Fig. 4).

The average training gain declined consistently as vari-
ables were removed (Fig. 4). There was a non-monotonic
decline in the standard deviation (0.075 to 0.021) of the
training gain values from the seven-variable to the one-
variable partition and variability was higher in the behavior of
the average test gain as model size decreased. The standard
deviations of the test gain values from each partition were
higher than those for the training gain ranging from 0.075 to
0.262.

Given the higher sensitivity of the average training gain
relative to the average AUC value, the former metric was used
to decide which of the best performing models should be used
for mapping. Therefore, the logical choice of best model was
the one that had the fewest predictors with an average

Table 1 – p-Values from the binomial test

Number of
variables

Binomial test p-value for threshold Average AUC p-value Predictor variable
removed

1 5 10

Spatial model
7 1.87E−04 1.27E−07 4.98E−12 0.0079
6 2.35E−04 1.27E−07 4.18E−12 0.0064 Moisture index
5 3.81E−04 3.55E−08 1.63E−12 0.0067 Slope
4 2.72E−04 3.28E−08 1.53E−11 0.0036 Aspect
3 2.42E−04 1.75E−08 1.80E−11 0.0041 Elevation
2 3.76E−02 1.77E−07 8.86E−10 0.0047 Vegetation
1 8.44E−04 2.58E−07 3.65E−09 0.0204 North UTM

Without east and north UTM
5 2.23E−03 1.37E−05 1.65E−07 0.0132
4 1.57E−03 1.06E−06 2.64E−08 0.0158 Slope
3 1.04E−03 7.65E−06 1.01E−05 0.0229 Moisture index
2 9.9E−04 4.03E−06 7.05E−08 0.0189 Aspect
1 1.33E−04 9.37E−05 2.53E−08 0.1684 Elevation

The average AUC p-values are from the Mann–Whitney Test. The column titled predictor variable removed lists the name of each variable as it
was removed from the modeling set.
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training gain not significantly different than the full model or
the model with highest training gain. Using the overlap
between 95% confidence intervals for training gain averages
as the criteria for significance the five-variable model contain-
ing the spatial coordinates, vegetation class, elevation and
aspect was not significantly different than the two larger
models but was different than the remaining smaller models
(Fig. 4). Therefore the five-variable model was used to create
the distribution of potential nesting habitat for the Hart
Mountain study area.

3.2. Models without east and north UTM

The regularized training gain for the five-variable model using
all presence records but without the spatial coordinates was
0.604. The relative importance of the predictor variables, in
terms of the gain was nearly the same as when the spatial
coordinates were included in themodel except that vegetation
decreased the gain the most when omitted suggesting it
contained the most information not contained in the other

variables. The order of variable removal from the full model
was slope, moisture index, aspect, and elevation leaving
vegetation as the one-variable model (Table 1).

The results of the binomial test (Table 1) indicated that, on
average, all of the models performed significantly better than
random. An interesting feature of this analysis was the
average AUC values (Fig. 4) were only slightly lower than
those for themodelswith spatial coordinates and the decrease
in value as variables were removed was small. The p-values
from the Mann Whitney Test indicated that, on average, the
AUC estimates for each model, except the one-variable model
containing vegetation class, were significantly better-than-
random prediction. However, the average p-values were
generally larger than the model with spatial coordinates
(Table 1).

Unlike the AUC values the average training and test gain
were more sensitive to the removal of the spatial coordinates.
There was a slight increase in average training gain for the
three-variable model followed by a steep drop for the smaller
models. The standard deviation of the five training gain
averages ranged between 0.029 and 0.054 and the range for the
test gain averages had consistently higher values from 0.076 to
0.152.

Using the overlap between 95% confidence intervals for
training gain averages as the criteria for significance it appears
that the Maxent model containing vegetation class, elevation,
and aspect was not statistically different from the four or five-
variable model. The average training gain for the two-variable
model, containing vegetation and aspect, was significantly
different from the three larger models and the one-variable
model with vegetation only (Fig. 4).

This analysis shows that the spatial coordinates were
powerful predictor variables for this dataset and the geogra-
phical extent of the study region. In fact, the average training
gain for themodel containing just theUTMcoordinates (0.689±
0.034) alonewas significantlyhigher than thebest training gain
among models with the coordinates omitted (0.610±0.024).
Nonetheless, vegetation class, elevation and aspect emerged
as important landscape features for the nest-site locations of
sage grouse at HMNAR.

3.3. Predictor variables

Both east and north UTM produced unimodal response
profiles (Fig. 5). East UTM was skewed on the right and north
UTM considerably flatter across the range of values. The
exponent for east UTM dropped below zero at about 75% of its
range of values which accurately reflects the lower density of
nest locations in the easternmost portion of the study area.

The P. tridentata (PUTR) subcategory within the vegetation
class predictor variable was associated with the highest
increase in the exponent (Fig. 5). These results are consistent
with what could logically be expected given PUTR had the
highest ratio of presence records to area. Indeed, the value of
this ratio, the number of presence records to area, was
consistent with the pattern of values for the exponent across
subcategories when the model contained only the vegetation
class variable. It appears that the exponent value will be close
to zero when a subcategory contains no presence records as
was the case for ARTRTR and CELE and when the ratio is quite

Fig. 4 –Values for the test AUC, training gain, and test gain
averaged across the 10 random partitions of the presence
records. The x axis represents the number of predictor
variables in eachmodel. Models that included east and north
UTM as predictors are shown in the top graph (A) and those
that omitted the spatial coordinates are shown in the bottom
graph (B). Models with same lowercase letter above the bar
for average training gain were not significantly different.
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Fig. 5 –These curves showhow each environmental variable affects theMaxent predictionwhen all presence recordswere used to build a full model. The rawMaxentmodel has
the exponential form described by Eq. (1) and the curves show how the exponent changes as each environmental variable is varied, while all other variables are held constant at
their average sample value. The shapes of these curves can be different than what is shown depending upon which predictor variables are included in the model.

382
E
C

O
L
O

G
I
C

A
L

I
N

F
O

R
M

A
T

I
C

S
3

(
2
0
0
8
)

3
7
5
–
3
8
6



Author's personal copy

small such as 0.0054 for the riparian subcategory. Negative
exponent values were associated with subcategories that had
even smaller presence records to area ratios such as 0.0008 for
ARTRW) and 0.0021 for riparian. Aldridge and Boyce (2007)
reported riparian areas were identified as risky habitats.

The value of the exponent started at zero for the lowest
values of elevation, then increased to a little over two until
5760 ft asl, was relatively flat until 6760 ft after which it rapidly
decreased to negative values for the highest elevations. Aspect
was a difficult landscape feature to create a reliable predictor
variable from because northern-most areas include the high-
est and lowest values and flat areas (32% of the study area)
have no aspect. Thus, sine and cosine transformations of
aspect are problematic. The alternative chosen for this study
was to create a categorical variable with flat areas as one
subcategory and all other areas with slope greater than zero as
the other four categories. Aspect was a relatively weak
predictor variable but the pattern of values for the exponent
across the five subcategories may indicate an ecological
signal. The pattern suggests that sage grouse show a slight
avoidance of north and west facing slopes for nest sites. The
thermal benefit of earlymorning exposure to solar radiation to
nest success might have some driving force in the natural
selection of the most successful nest-site-selection behaviors.
This hypothesis then might be a reasonable explanation for
the response in exponent across the five categories (Fig. 5).

The value of the exponent was slightly positive for slopes of
12° to 24° and then became negative in a curvilinear trend as
slope increased (Fig. 5). This pattern of response reflected the
relationship that should be expected between nest-site
selection and slope, that is, sage grouse avoid steep slopes
for nest sites. The IntegratedMoisture Index predictor variable
performed poorly in the models and the response of the
exponent across the range of values was negative. This result
is consistent with the low increase in theMaxent exponent for
the riparian subcategory in the vegetation class predictor and
suggests that the digitally-derived hydrologic features of the
landscape did not carry a meaningful signal for this data.

3.4. Predictive mapping

A five-variable model built from the full set of 204 nest-site
locations was used to create the distribution map of sage
grouse potential nest-site habitat for the study area. The
predictor variables in this model included the spatial coordi-
nates, vegetation, elevation, and aspect (Fig. 6). Visual inspec-
tion shows strong agreement between nest location points
and the continuous probability distribution. The regions of
highest nest-site locations were accurately associated with
regions of high probability predicted by the model. However,
even though Maxent predicted a relatively compact area of
high nesting potential there were still a few nests placed in

Fig. 6 –Predicted potential geographic distribution of nest-site habitat for sage grouse within the circular boundary of the
vegetation class GIS layer. The color red represents areas with higher estimates for the probability of nest-site habitat.
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areas quantified as low nesting potential over the 8 years of
location information. This distribution map perhaps provides
a foundation for further research to explore the nature of the
relationship of nest success and recruitment to the probability
distribution. This would be important for understanding the
extent to which the Maxent models and probability maps
predict source and sink habitats (Aldridge and Boyce, 2007).

The potential nesting habit distribution shown in Fig. 6 is,
in large part, dependent upon the size and spatial extent of the
vegetation classification GIS layer. Having a vegetation
classification layer, along with layers for the other predictor
variables, with a geographical boundary of the complete
boundary of HMNAR would produce a slightly different
nesting potential distribution than the one in Fig. 6.

4. Discussion

This study tests the application of predictive modeling and
mapping to sage grouse nesting habitat with Maximum
Entropy (Phillips, 2006) as amethod for generating distribution
information that is fundamental to a sustainable wildlife
management policy. The Maximum Entropy modeling
approach, when applied to Gregg's (2006) sage grouse dataset,
was successful in achieving the objectives of this study. The
relationships between sage grouse nest-site locations and a
set of associated biophysical attributes were quantified using
the Maxent software and probability distribution maps were
created that locate the relative likelihood of nest-site habitat.
The model adequately passed the fundamental test of
predicting what could reasonably be expected, that is, there
was good overlap between the spatial distribution of prob-
ability values (Fig. 6) and the highest densities of nest-site
locations. The Maxent predictions are continuous thus allow-
ing further distinction in areas suitable for nest-site location
between marginally strong prediction versus those with
increasingly stronger prediction. These distributions, there-
fore, provide an improvement over shaded outline maps of
species distributions found in standard field guides (Phillips et
al., 2006). Discrete distributions can be created from the
continuous Maxent distribution by applying threshold values
to filter output cells into categories of habitat suitability
(Hirzel, 2006; Valverde and Lobo, 2007). Therefore, the
continuous Maxent probability distribution is the more
preferable modeling and mapping system to those that
produce only discrete distribution output. More importantly,
the comparisons of a suite of modeling methodologies made
by Elith et al. (2006) found Maxent to be among the top
performers.

Maxent was capable of combining linear, quadratic,
product, and hinge features to capture the complex responses
for the continuous variables and the two categorical predictors
in the model. The response curves (Fig. 5) illustrate how the
choices sage grouse made for nest-site selection were
constrained by the chosen landscape features represented in
the predictor variables. However, the shapes of these curves
are not fixed and can change depending on the set of predictor
variables andmodeling features chosen for themodel. The use
of hinge features, in combination with Linear, Quadratic, and
Product features, in the modeling process was critical to the

flexible fitting of the response curves across the range of each
predictor variable and resulted inmeasurable improvement in
model predictability than when hinge features were not
selected.

This study presented criteria for selecting a Maxent model
with the best subset of predictor variables for the purposes of
distribution mapping. The objective of the method was to
identify a model with the fewest predictor variables that
explained the data adequately (Burnhamand Anderson, 2002).
This objective was based on the principle of parsimony and
the philosophy that models are only estimates of reality and
that no single model is ever “true” or likely to perform well in
all applications (Hilborn and Mangel, 1997). The process
included creating a full model containing all the predictor
variables, identifying the least informative predictor, creating
a reduced model without that predictor, and repeating this
process until only one variable remained. The model with the
fewest predictor variables and an average training gain not
significantly different than the model with highest training
gain was selected as the best alternative. The overlap between
95% confidence intervals for training gain averages was used
for the test of significance. Conversely it might be unwise to
ignore small improvements in training gain with additional
variables especially if the modeling objective is to find the
most powerful set of predictor variables.

The Maxent models, expressed through the differences in
training and test gain between models containing the UTM
coordinates and those without them, suggest that the full set
of environmental factors controlling the selection of nest sites
within the study area were not sufficiently represented with
the five other predictor variables. This interpretation assumes
that a perfect model would contain a set of environmental
variables that sufficiently described all the parameters of the
species' fundamental niche relevant to its distribution at the
grain of the modeling task (Phillips et al., 2006). Hence, the
assumption is that in a perfect model the UTM coordinates
would contribute very little to training gain values above what
is produced by the other predictor variables. The results of
Holloran et al. (2005) suggest that other attributes such as the
amount of shrub and other plant species cover per unit area or
the height of shrubs and other species might be important
predictor variables. Indeed, in the eastern half of the study
area the number of different classes and polygon density is
much higher than the western half. Furthermore, Hernandez
et al. (2006) confirmed the results of other researchers that the
ecological characteristics of species affects model accuracy
potential, where species widespread in both geographic and
environmental space are generally more difficult to model
than species with compact spatial distributions, as is the case
with the sage grouse nest data. They also confirmed that the
ability to model species effectively is strongly influenced by
species ecological characteristics independent of sample size.
Without the UTM coordinates the Maxent models produced
higher probability values in areas where nest sites had not
been recorded thus, potentially overestimating the distribu-
tion of nesting habitat.

Even though in a long-term, multi-partner study, from
which the nest-site data emerged, it is difficult to keep
protocols standardized, especially when technology changes
and improves during the study, and data may not be of ideal
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quality, analysis of the data must be conducted regardless.
Therefore it is worth considering the results of this study in
context of the list of serious pitfalls that could affect the
accuracy of predictivemodeling andmappingwith occurrence
data described by Phillips et al. (2006). For example, all
occurrence localities have some level of precision or error,
can be biased by access conduits, sampling barriers, and
variation in sampling effort over space and time. The choice of
variables to use for building models directly affects the degree
to which a model can be generalized to other areas and time
periods. The set of modeling variables might be insufficient to
describe all the parameters of a species fundamental niche
relevant to its distribution at the grain of the modeling task.
Large errors within the predictor variables will directly affect
model accuracy. The results of this study would have
naturally been different if the occurrence data with poor
location information had been used or the vegetation layer
encompassed an area of different size or shape. For example,
there were 86 potential nest-site locations that were not used
for model building because they fell outside of the boundary
for the GIS layer for vegetation cover class. Nonetheless, these
points could be used for further validating and refining the
current model if the vegetation cover information with the
same resolution were made available.

The Maxent modeling methodology provides a powerful
analytical tool that is capable of predicting the potential
distribution of ecological phenomena such as sage grouse
nest-site habitat based on occurrence information collected
fromhistorical, georeferenced events. Predictions assume that
the same or similar events will occur in the future within the
same geographical extent as they have in the past. While
these assumptions are not likely to be valid all the time for all
species and locations given the inherent variability in
biological phenomena and climatic factors, the Maxent
models and distributions provide a means of modeling and
mapping ecological events that provide important informa-
tion for the future management and conservation of natural
resources. Model predictions will typically be larger than a
species' realized distribution because few species occupy all
areas that satisfy their niche requirements (Phillips et al.,
2006). Other drawbacks include: 1) it is not as mature a
statistical method as Generalized Linear or Additive Modeling
(GLM, GAM), and 2) the Maxent software presented by Phillips
et al. (2006) would benefit from the implementation of the
capability to calculate confidence intervals for individual
probability estimates. The applicability of the Maximum
Entropy principle to species distributions is supported by
thermodynamic theories of ecological processes. The second
law of thermodynamics specifies that in systems without
outside influences, processes move in a direction that max-
imizes entropy (Schneider and Kay, 1994). Thus, in the absence
of influences other than those considered in the model, the
geographic distribution of a species will indeed tend toward
the distribution of Maximum Entropy (Phillips et al., 2006).

4.1. Management implications

The type of vegetation was the most important predictor
variable in the Maxent models of sage grouse nest-site
locations within the extent of the analysis area. The PUTR

subcategory had the highest exponent value followed by the
ARTRVA and rock subcategories (Fig. 5). The result of the
riparian subcategory having themost negative exponent value
for nest-site location agrees with other research (Aldridge and
Boyce, 2007) that reported riparian habitats as risky for chick
survival. They found that more than half of the habitats
identified as attractive nesting habitat were considered risky
and considered them an “ecological trap.” Therefore, caution
must be applied before interpreting all vegetation subcate-
gories that produced positive exponents as “source” habitats.
The ARTRW subcategory also had a negative exponent value
indicating possible avoidance of this vegetation class for
nesting. These results, however, do not refute the conclusion
reached by Holloran et al. (2005) that dense sagebrush stands
with adequate herbaceous vegetation represent desirable sage
grouse nesting habitat, but rather add to them the strong
association of PUTR for the Hart Mountain population. A
sustainable management plan should limit actions (i.e.
prescribed fire, herbicides, overstocking of ungulates) that
would reduce the ecological features with the highest Maxent
exponent values in this study and promote the maintenance
or restoration of these and other ecosystem features such as
forbs and grasses recognized as important for egg production
and chick survival (Gregg, 2006).
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