Report to the OSU Agricultural Research Foundation for the Oregon Processed Vegetable Commission

Control and Management of Common Smut on Corn in the Columbia Basin of Oregon and Washington

George Clough and Philip Hamm, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR and Lindsey du Toit, Washington State University, Mount Vernon Research and Extension Unit, Mount Vernon, WA

Introduction

Since 1996, the incidence of common smut (Ustilago zeae) of sweet corn and field corn in the Columbia Basin of Oregon and Washington has increased from non-detectable levels to infection of most fields throughout the Columbia Basin. The extent of losses due to common smut in sweet corn has not been determined but major damage and loss has been reported by the sweet corn processing industry since that time. Processing losses have been due to increased labor costs for removing smutted ears, new equipment to handle smutted corn, and unacceptable quality of ears to produce Acob@ corn due to product contamination by spores in the wash water. Direct grower losses have occurred due to heavily smutted fields being bypassed (rejected) for harvest.

In 1999 a new kernel quality issue potentially related to smut infection was confirmed. Reports suggest this symptom was observed in 1998 but was likely misidentified as Fusarium ear rot. Affected kernels have a slight fungal growth; when processed, kernels turn dark, making cob corn into culls. The fungus appears yeast-like in culture but the identity and relationship of this fungus to the overall problem is unknown. In addition, damaged (split, leaky) and/or discolored kernels were found in some ears from fields with smut, primarily in SuperSweet Jubilee. The cause of this disorder is unknown but may be related to smut infection.

This research was begun with the following objectives:

1) Screen sweet corn cultivars for resistance to common smut.

2) Investigate effect of planting date on development of common smut.

3) Evaluate fungicides for the control of common smut.

4) Investigate damaged or discolored kernels in what appears to be ears not infected with corn smut.

Additional funding for this research provided by Columbia Basin Processed Vegetable Council, Washington State Commission on Pesticide Registration, Abbott & Cobb, Crookham Co., Harris Moran Seed Co., and Syngenta.

Materials and methods

Planting date/cultivar evaluation: Thirty-five sweet corn cultivars grown for processing in the Columbia basin were evaluated for resistance to common smut (Table 1). Plots were seeded May 1 and Jun 4, with 4-30' rows/plot, on the Hermiston Agricultural Research and Extension Center. The experimental design was a randomized complete block, with four replications.

Normal commercial production practices were followed. At ear maturity, plant stand was recorded, and the number and location (at base, between base and ear, on ear, between ear and tassel, on tassel) of smut galls was noted for each plant. Some plants had more than one infection location. Data were analyzed with the SAS GLM procedure following arcsine transformation.

Kernel leak evaluation:

Twenty-five ears from each plot of the second variety evaluation planting were evaluated for "leaky" kernels, by husking and visually rating severity on a scale of 0-5. These ratings were regressed on the percent ear infection data across all varieties, and when sorted by type (su, se, or sh_2) to try to determine if there is a relationship to common smut.

Fungicide evaluation: Nine fungicides were evaluated, alone and/or in combination, with or without COC at 1% v/v (Table 2). Supersweet Jubilee was planted in Plymouth and Mesa WA, and Jubilee was planted at Paterson. Fungicides were applied with a boom sprayer covering 6 rows using 30.7 gpa at tasseling (Plymouth, Paterson) or at silking (Mesa). At the Paterson location an additional application was made two weeks following the first. Data collection and analyses were similar to 2000 except 4-15' rows/plot were evaluated. At additional sites outside of Paterson WA, three fields of Supersweet Jubilee and one of white Supersweet Jubilee were chemigated in wedges, with 0, 1 or 2 applications of Quadris. Data collection and analyses were as above except 4-40' rows/plot were evaluated.

Cultivar	Source
su type:	
1703	Novartis
1861	Novartis
2547	Rogers
Chase	Asgrow
Conquest	Crookham
Dynamo	Harris Moran
Eliminator	Crookham
Elite	Novartis
FMX 516	Harris Moran
HMX 7384	Harris Moran
Jubilee	Novartis
Legacy	Harris Moran
Spirit	Rogers
Stylepak	Harris Moran
sh ₂ type:	
ACX 232	Abbott & Cobb
ACX 429	Abbott & Cobb
ACX 904	Abbott & Cobb
ACX 933	Abbott & Cobb
Challenger	Asgrow
Crisp n Sweet 710	Crookham
Diva	Asgrow
GSS-5865	Rogers
HMX 8392S	Harris Moran
Krispy King	Novartis
Marvel	Crookham
Shaker	Asgrow
Sheba	Asgrow
Summer Sweet 500	Abbott & Cobb
Summer Sweet 610	Abbott & Cobb
Summer Sweet 8100	Abbott & Cobb
Supersweet Jubilee	Novartis
Supersweet Jubilee Plus	Novartis
se type:	-
Cinch	Asgrow
Climax	Asgrow
2684	Novartis

Table 1. Sweet corn cultivars evaluated for resistance to common smut, Hermiston, OR. 2001.

Fungicide	Manufacturer	Rate/Application		
Dividend XL Folicur ² Quadris ¹ Stratego Tilt Quadris+Tilt	Syngenta Crop Protection Bayer Syngenta Crop Protection Syngenta Crop Protection Syngenta Crop Protection Syngenta Crop Protection	1.1 7.2 12.3 10.0 4.0 2.7, 3.42, 4.12,		
Messenger BASF 516	Éden Biosciences BASF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

Table 2. Fungicides evaluated for control of common smut, Paterson, Plymouth and Mesa, WA, 2001.

¹Quadris also applied at 6.13 and 9.2 oz/a, and in combination w/Warrior insecticide (Syngenta Crop Protection) at 0.2 pt/a at the Morrow Co. location. ²Also applied at 3.5 and 4.5 oz/a in combination w/Flint at 3 and 4 oz/a.

Results

Planting date/cultivar evaluation: The percentage of plants with smut infections on the base, between base and ear, between ear and tassel, on the tassel, and percentage of plants infected overall increased from the first to second planting (Table 3). The different cultivars, however, responded somewhat differently to planting date (Tables 4, 5). The varieties most susceptible to infection of the ear over both planting dates included Supersweet Jubilee Plus, Supersweet Jubilee, Jubilee, Sheba and 2684 (Table 4). Varieties exhibiting the least percent infected ears over both planting dates were Conquest, FMX516, HMX 7384, Legacy, and Marvel. Overall percentage of plants with common smut infections is presented in Table 5.

The shrunken 2 (sh_2) genotype was most susceptible to smut infection, followed by the sugary-enhanced (se) genotype (Table 3). The normal sugary (su) genotype was least susceptible.

Kernel leak evaluation: Regression analyses of the leak rating on percent infected ears across all varieties was significant at P#0.0001, and also when sorted by type (su, se, or sh_2). The R^2_{adj} for a linear relationship was 0.581, 0.510, 0.696, and 0.626 across all varieties, and for su, se, and sh_2 types, respectively.

-		Gall location							
	Base	Base-Ear	Ear	Ear-Tassel	Tassel	Plant			
_		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
			Perc	cent (%)					
Planting dat	e								
May 1	7.2	14.7	4.3	3.0	24.2	42.1			
Jun 4	4.8	18.2	4.6	2.1	47.2	56.4			
	* * * *	* * *	NS	* * * *	* * * *	****			
Туре									
sh ₂	8.5a	21.3a	6.1a	3.8a	39.6a	57.1a			
se	4.4 b	10.3 b	4.4ab	1.6 b	22.8 b	35.2 b			
su	3.1 b	11.5 b	2.3 b	1.1 b	33.4ab	42.2 b			
	* * * *	****	****	****	**	****			

Table 3. Effect of planting date and type on development of common smut of sweet corn, Hermiston, OR., 2001.

NS, **, **** Effect of planting date or type not significantly different or different at P#0.01, P#0.001, or P#0.0001, respectively. Means followed by different letters significantly different at P#0.01 (Duncans multiple range test).

Although not conclusive, these data indicate that there may be a relationship between common smut infection, and the leaky kernel defect.

Fungicide application: In two of three locations, Folicur significantly reduced the percent plants infected with the smut fungus (Table 6, 7). Folicur also reduced the percent plants with infections on the lower stalk (between base and ear) at Plymouth (Table 6). At the Mesa location, Folicur at a reduced rate plus Flint (3.5 + 3 oz/a) and Headline also reduced the percent plants with smut galls (Table 7).

Quadris increased the percent healthy plants in one of three locations (Table 6).

Messenger applied twice at Plymouth WA (Table 6) reduced the percent infected plants and the percent plants with galls on the lower and upper stalk (between ear and tassel).

At Paterson WA, Tilt (Table 8a) significantly reduced percent plants infected and percent plants with galls on the tassel. The percent ears infected was reduced by application of Quadris plus Tilt (3.4+4 oz/a) and Stratego at that location.

The use of Quadris by chemigation, regardless of one or two applications, did not significantly reduce infection levels (Table 9).

Discussion

The identification of resistant varieties may provide an effective tool to control this disease. Several of the varieties tested had significantly fewer infections than the cultivars most widely planted. However, use of these varieties alone may not provide adequate protection. Quadris, Folicur and Stratego appear to offer promise for chemical control; additional field trials to refine rates and timing are needed as well as looking at the cost effectiveness of their use. Also, residue tolerances have to be established prior to obtaining a label for use of some of these products in sweet corn. Ultimately the use of resistant varieties, combined with fungicide applications and/or different cultural practices may prove to be the best method to reduce disease levels. Because of the potential variation between years and the subsequent differences in disease pressure, and the continual release of new cultivars, this work needs to be repeated over several seasons.

	Plant	ing date	
Cultivar	May 1	Jun 4	Average
1703 1861 2547 2684 ACX 232 ACX 429 ACX 904 ACX 933 Challenger Chase Cinch Climax Conquest C&S 710 Diva Dynamo Eliminator Elite FMX 516 GSS-5865 HMX 8392s HMX 7384 Jubilee Krispy King Legacy	May 1 4.3 def 7.3 def 2.0 ef 15.3ab 1.7 ef 2.9 def 5.0 def 2.6 ef 6.8 def 1.9 ef 0.1 f 1.0 ef 0.1 f 1.0 ef 0.1 f 1.0 ef 0.1 f 1.9 ef 2.7 ef 1.7 ef 0.2 f 4.0 def 3.3 def 0.6 f 17.0a 8.6 cde 0.4 f	Jun 4 Infected ears 0.7 i 4.7 defghi 0.0 i 6.8 bcdefg 2.0 ghi 9.0 bcde 12.0 b 4.9 defghi 9.9 bcd 0.5 i 2.5 fghi 0.5 i 0.0 i 7.5 bcdef 1.0 hi 0.5 i 0.2 i 0.1 i 0.4 i 6.5 cdefgh 1.5 ghi 0.5 i 9.9 bcd 9.5 bcd 0.6 i	<pre>(%) 2.5 ghi 6.0 efg 1.0 hi 11.1 bcd 1.8 ghi 6.0 efg 8.5 cde 3.8 fghi 8.3 cde 1.2 hi 1.3 hi 0.7 hi 0.1 i 6.9 def 1.3 hi 1.2 hi 1.5 hi 0.9 hi 0.3 i 5.2 efgh 2.4 ghi 0.5 i 13.4 b 9.0 cde 0.5 i</pre>
Marvel Shaker Sheba Spirit Stylepak SmrSwt 500 SmrSwt 610 SmrSwt 8100 SprSwt Jubilee SprSwt J Plus	0.1 f 0.3 f 16.4ab 1.4 ef 0.9 f 1.1 ef 1.8 ef 4.4 def	0.5 i 0.9 i 6.8 bcdefg 3.7 efghi 1.4 ghi 4.0 efghi 2.2 fghi 10.7 bc 17.7a 22.0a ****	0.3 i 0.6 hi 11.6 bc 2.5 ghi 1.2 hi 2.6 ghi 2.0 ghi 7.5 cdef 13.9 b 18.1a ****

Table 4. Susceptibility of sweet corn cultivars to common smut infection of the ear, Hermiston, OR, 2001.

**** Cultivar effect significant at P#0.0001. Means followed by different letters are significantly different at P#0.01 (Duncans multiple range test).

=	Planting dat				
Cultivar	May 1	Jun 4	Average		
_			· ·		
1 7 0 0		ed plants (%)			
1703	48.0 cdefghi	93.4ab	70.7 bc		
1861	38.3 ghijlkm	87.0abcde	62.6 bcde		
2547	17.9 nop	13.5 m	15.7 l		
2684	45.7 cdefghij	41.1 hijklm	43.4 fghi		
ACX 232	34.6 ghijklmn	59.5 cdefghi	47.1 defghi		
ACX 429	64.5 bcd	72.0abcdefgh	68.3 bc		
ACX 904	47.0 cdefghij	82.3abcdef	64.7 bcd		
ACX 933	43.1 efghijk	75.1abcdefg	59.1 bcdef		
Challenger	31.9 hijklmno	54.4 defghij	43.1 fghi		
Chase	46.3 cdefghij	75.0abcdef	60.6 bcdef		
Cinch	45.9 cdefghij	32.6 ijklm	39.3 ghij		
Climax	21.9 lmnop	25.0 jklm	23.4 jkl		
Conquest	19.4 mnop	15.0 lm	17.2 1		
Crsp n Swt 710	46.2 cdefghij	59.5 cdefghi	52.9 cdefgh		
Diva	27.7 jklmno	61.9abcdefghi	44.8 efghi		
Dynamo	28.9 ijklmno	33.6 ijklm	31.2 ijkl		
Eliminator	44.9 cdefghijk	41.1 hijklm	43.0 fghi		
Elite	21.3 lmnop	19.7 klm	20.5 kl		
FMX 516	44.6 defghijk -	86.1abcde	65.3 bcd		
GSS-5865	53.9 bcdefg	60.0 cdefghi	56.9		
	- -	cdef	g		
HMX 8392s	58.7 bcdef	75.5abcdefg bc	67.1		
HMX 7384	25.7 klmno	20.7 klm	23.2 jkl		
Jubilee	64.4 bcd	49.6 fghijk	57.0 cdefg		
Krispy King	84.1a	94.6a	89.4a		
Legacy	48.8 bcdefghi	54.6 defghij	51.7 cdefgh		
Marvel	12.6 op	30.7 ijklm	21.7 jkl		
Shaker	68.1ab	87.6abcd	77.8ab		
Sheba	49.9 bcdefgh	88.8abc	69.3 bc		
Spirit	5.7 p	33.2 ijlm	19.4 kl		
Stylepak	40.2 fghijkl	63.5abcdefqhi	51.9 cdefgh		
Smmr Swt 500	23.4 lmnop	50.9 fghijk	37.2 hijk		
Smmr Swt 610	47.1 cdefghij	74.6abcdef	60.8 bcdef		
Smmr Swt 8100	46.7 cdefghij	46.1 ghijkl	46.4 defghi		
SprSwt Jubilee		54.3 efghij	59.7 bcdef		
SprSwt J Plus	60.8 bcde	61.0 bcdefghi	60.9 bcdef		
SPIDAC O LIUS					

Table 5. Susceptibility of sweet corn cultivars to common smut infection, Hermiston, OR, 2001.

58

•		
* * * *	* * * *	* * * *

59

**** Cultivar effect significant at P#0.0001. Means followed by different letters are significantly different from one other at P#0.01 (Duncans multiple range test).

Treatment Rate Timing		Gall location								
	Rate	Timi	ing	Non	е	Base	Base-Ear	Ear	Ear-Tassel	Tassel
	oz/a						Percent plan	nts (8)		
Messenger	2.25	Aug	1^{1}	27	bcd	5	60abc	10	13 bc	2
Messenger	2.25	Aug	10	22	d	3	67a	8	13 bc	1
Messenger	2.25	Aug	1&10	40a		3	46 d	8	7 d	4
Messenger	2.25	Aug	16 ²	24	d	4	64a	10	12 bc	3
Quadris	12.3	Aug	16	33	b	1	55 bcd	9	9 cd	2
Folicur	7.2	Aug	16	30	bc	2	53 cd	10	13 bc	3
Trtmnt A ³				23	d	6	60abc	9	18a	3
Trtmnt B				23	d	6	64a	12	11 bcd	3
Trtmnt C				26	cd	4	60abc	12	10 bcd	4
Trtmnt D				26	cd	6	59abc	10	14ab	5
Check				23	d	5	63ab	10	12 bc	3
				***		NS	*	NS	NS	NS

Table 6. Fungicide efficacy for control of common smut in Supersweet Jubilee sweet corn, Plymouth, WA, 2001.

*, ***, NS Treatment effect significant at P30.05, P30.001, or not significant, respectively.

Means followed by different letters significantly different at P30.05 (Duncans multiple range test).

¹Sweet corn 24" tall on Aug 1. ²Tasseling on Aug 16.

³CBI treatments applied Aug 16, 23, 29, and Sep 6.

Treatment		Gall location					
	Rate	None	Base	Base-Ear	Ear	Ear-Tassel	Tassel
	oz/a	······································	Per	cent plants	(8)		· · · · · · · · · · ·
Stratego	10.0	47 d	7	35	10	3	3
Flint	8.0	50 bcd	12	25	9	2	1
Folicur	7.2	59a	5	25	6	4	3
Folicur +	3.5+						
Flint	3.0	60a	6	26	8	3	1
Folicur +	4.5+						
Flint	4.0	57abc	8	30	6	2	2
Quadris	12.3	55abc	11	31	6	2	1
BASF 516	10.6	55abc	10	27	7	4	3
Headline	12.3	58a	8	25	7	5	3
Check		48 cd	7	34	10	4	2
		*	NS	NS	NS	NS	NS

Table 7. Fungicide efficacy for control of common smut in Supersweet Jubilee sweet corn, Mesa, WA, 2001.

 $^{*,\ NS}$ Treatment effect significant at P30.05 or not significant, respectively. Means followed by different letters significantly different at P30.05 (Duncans multiple range test).

		Gall location							
Treatment	Rate	None	Base	Base-Ear	Ear	Ear-Tassel	Tassel		
	oz/a		Per	cent plants	(8)				
Quadris	6.2	33abc	13	55	11abc	1	4 d		
Quadris	9.2	36abc	12	57	11abc	2	8abcd		
Quadris	12.3	28 bc	12	61	11abc	1	9abcd		
Quadris + COC^1	12.3	31 bc	11	61	11abc	1	10abcd		
Warrior	3.2	25 bc	10	63	14a	1	15a		
Quadris +	12.3 +								
Warrior	3.2	35abc	10	57	12abc	1	8abcd		
Tilt	4.0	46a	9	47	11abc	1	5 d		
Quadris +	2.7 +								
Tilt	4.0	32 bc	12	57	12abc	2	8abcd		
Quadris +	3.4 +								
Tilt	4.0	33abc	10	55	9 bc	1	9abcd		
Quadris +	4.1 +								
Tilt	4.0	35abc	14	53	12abc	2	8abcd		
Stratego	10.0	38ab	12	53	8 c	1	7 bcd		
Folicur + COC^1	7.2	23 c	10	62	14a	2	12abc		
Trtmnt E		33abc	11	56	11abc	1	5 cd		
Trtmnt F		22 c	12	70	14ab	1	9abcd		
Check		25 bc	11	65	14a	1	13ab		
		**	NS	NS	*	NS	*		

Table 8a. Fungicide efficacy for control of common smut in Jubilee sweet corn, Paterson, WA, 2001.

*, **, NS Treatment effect significant at P30.05, P30.01, or not significant, respectively.

Means followed by different letters significantly different at P30.05 (Duncans multiple range test). ^{1}COC at 1% v/v.

Applications	Gall location							
	None	Base	Base-Ear	Ear	Ear-Tassel	Tassel		
		Per	cent plants	(8)				
Check	24.6	11.2ab	64.9a	14.2a	1.3	12.9		
1	29.9	13.5a	52.7 b	9.4 b	1.0	7.6		
2	34.2	8.9 b	62.6a	13.4a	1.4	9.0		
	NS	* * * *	* * *	* * * *	NS	NS		

Table 8b. Effect of application frequency on fungicide efficacy for control of common smut in Jubilee sweet corn, Paterson, WA, 2001.

^{NS} Treatment effect not significant.

Table 9. Effect of Quadris chemigation on development of common smut of sweet corn, Paterson, WA, 2001.

	· · · · · · · · · · · · · · · · · · ·	Gall location					
Treatment Applications		None	Base	Base-Ear	Ear	Ear-Tassel	Tassel
	no			Percent pla	nts (%)		
Check	0	60	6	25	8	7	1
Quadris	1	69	2	23	7	3	1
Quadris	2	64	4	22	8	4	1
-		NS	NS	NS	NS	NS	NS

^{NS} Treatment effect not significant.