Seed Corn Maggot (*Delia platura*) Management

KRISTIE BUCKLAND

ASSOCIATE PROFESSOR

VEGETABLE AND SPECIALTY SEED CROP SPECIALIST

Oregon State University North Willamette Research and Extension Center

Overview

O Current status

o Life cycle

Management

- o Model use
- Labeled products
- Cultural control

\circ IR-4 trials

- Conclusions
- o Future research needs

Magnified image of a seedcorn maggot.

Photo Source: Lindsey du Toit, Washington State University

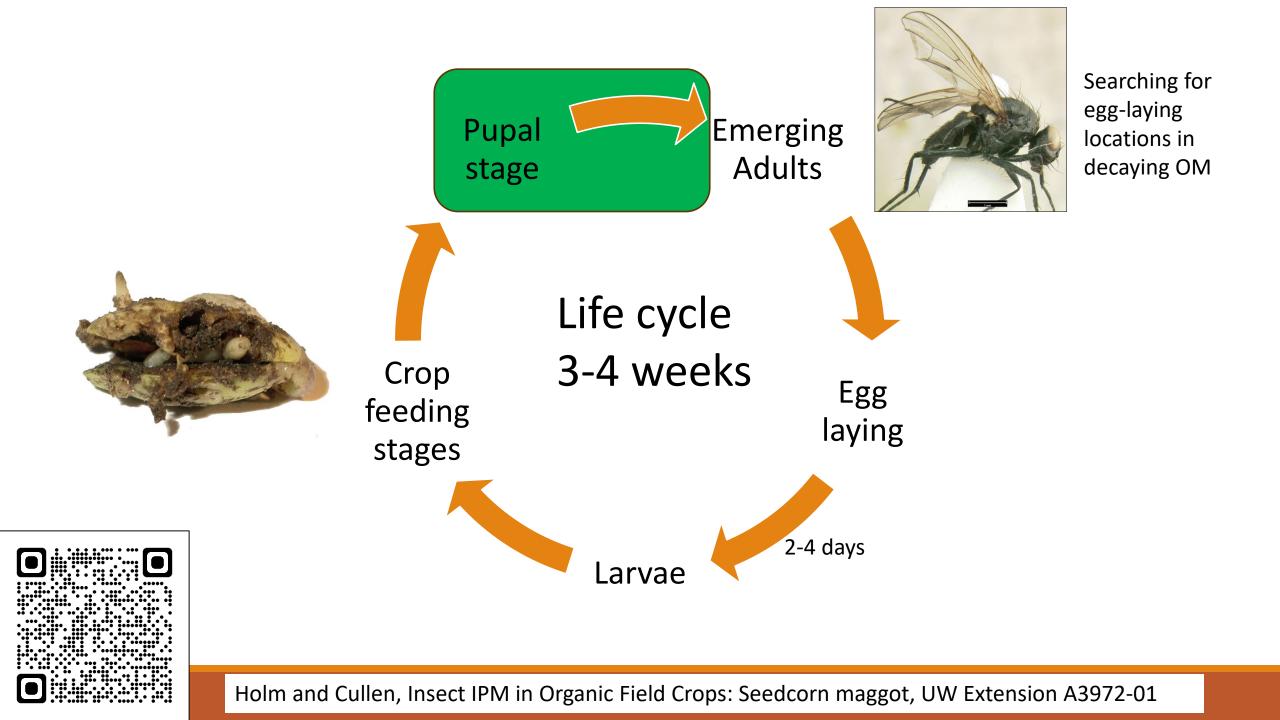
Taking an Integrated Approach to Control

Cover crop termination timing

Manure timing

PLANTING DATE!

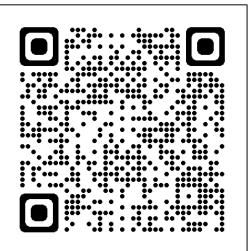
In-furrow or seed treatment pesticides



Crops Impacted

- Onions
- Corn
- Beans
- Cucurbits
- Carrots
- Parsnip

Crops with slow germination and emergence are particularly vulnerable!!!



Degree day modeling

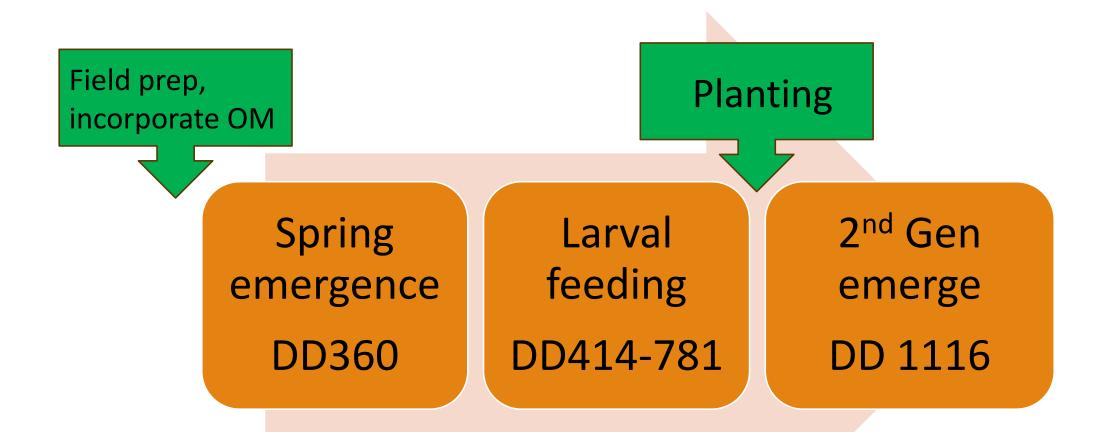
- Successfully predict periods of high egg-laying potential
- Enables farms to alter planting dates to avoid peak populations
- Can be highly effective
- Used as a combined approach

Online Phenology and Degree-day Models for agricultural and pest management decision making in the US Intro Station Model Output Weather Station Enter a station code, ZIP code, or city and state abbreviation. search for stations Selected station: (none) Western Integrated plant protection center **NIFA**

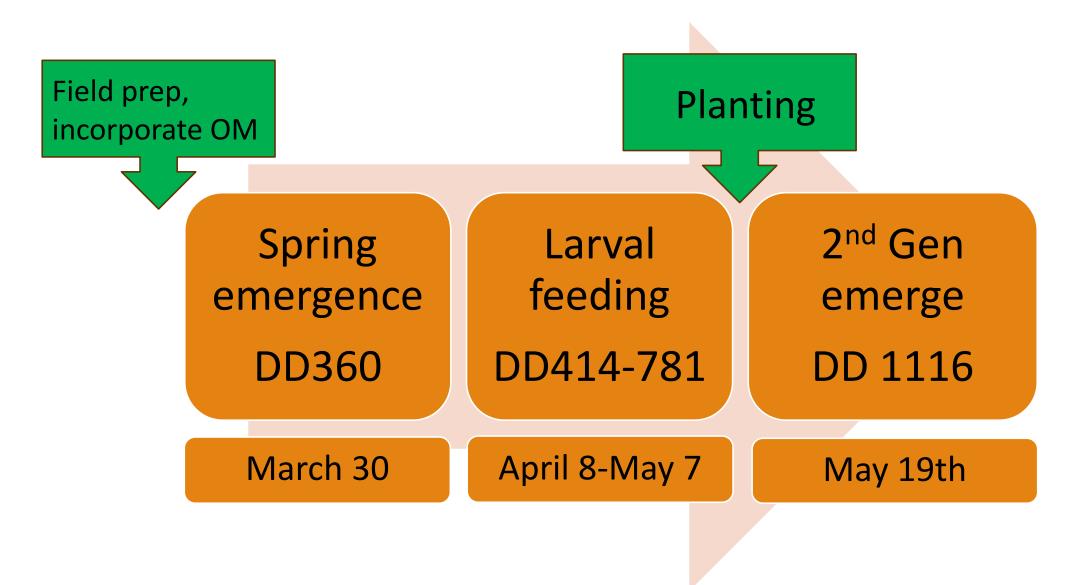
https://uspest.org/dd/model_app

for agricultu	henology and Degree-day Mod ral and pest management decision making in t odel Output Graph	A REAL PROPERTY AND
inse Model Inputs	seedcorn maggot [corn, soybean] ct model of WI State, PA State, IA State	J
	seedcorn maggot [corn, soybean]	
Гуре	insect	
Model source/other links	WI State, PA State, IA State	
Calculation method _ower threshold	simple average 39°F	
Jpper threshold	84°F	
Directions for starting/BIOFI		
Starting date	standard date 1-1 2023	
Ending date	default date 12-31 2023	
Model validation status	testing	
Region of known use	PA, SD, MN, IA, other Midwest & E. US states	
Extended forecast type	no forecast	
Events Table		
DDs(F) after Jan 1stModel	Event	
	adult emergence and egg laying	
	atch, larval feeding begins	
	on, end larval feeding	
	en adult emergence and egg laying	
	en larval feeding begins	
	en pupation, end larval feeding	
	n adult emergence and egg laying	
	n larval feeding begins n pupation, end larval feeding	
zzaa Siu gei	n pupation, enu la varieculity	

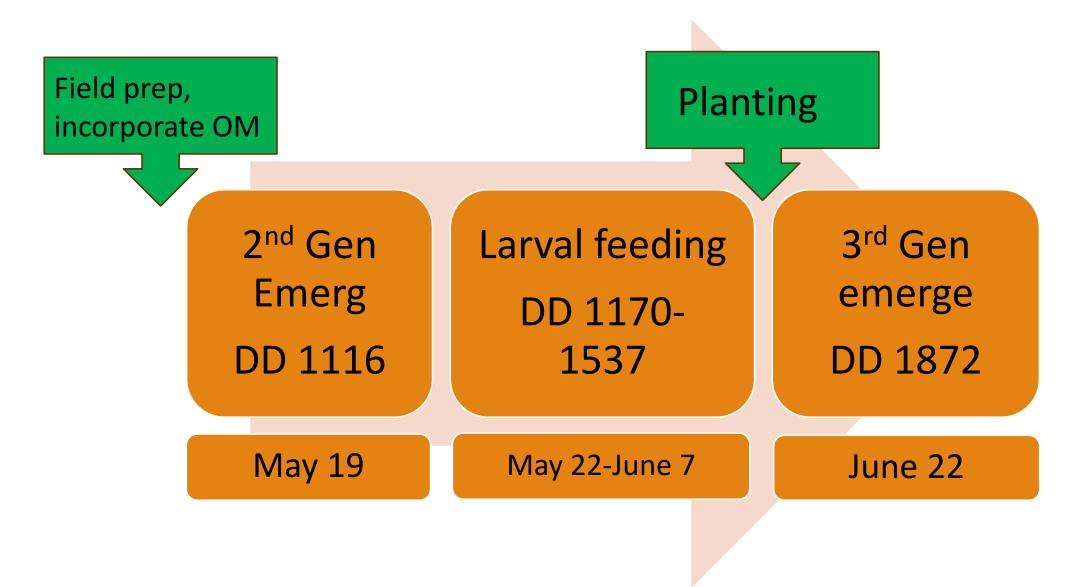
Model Inputs


Model species/general links seedcorn maggot [corn, soybean]

Type	insect			
Model source/other links	WI State, PA State, IA State			
Calculation method	simple average			
Lower threshold	39°F			
Upper threshold	84°F			
Directions for starting/BIOFIXCalendar date Jan. 1				
Starting date	standard date 1-1 2023			
Ending date	default date 12-31 2023			
Model validation status	testing			
Region of known use	PA, SD, MN, IA, other Midwest & E. US states			
Extended forecast type	no forecast			


Events Table

DDs(F) after Jan 1stModel Event


36	0	Peak adult emergence and egg laying	
41	4	egg hatch, larval feeding begins	
78	1	pupation, end larval feeding	
111	16	2nd gen adult emergence and egg laying	
11	70	2nd gen larval feeding begins	
15	37	2nd gen pupation, end larval feeding	
18	72	3rd gen adult emergence and egg laying	
19	26	3rd gen larval feeding begins	
22	93	3rd gen pupation, end larval feeding	

2023 Example—Willamette Valley Early Season

2023 Examples Continued Willamette Valley Late Spring

Take-aways

1st generation might be difficult to provide sufficient field prep before emergence

Planting between pupal stage and next generation emergence seemed to work well in 2021 and 2022 (Willamette Valley and Hermiston fields).

Ideally, keep up to date with online DD model as spring progresses

Two regional pest monitoring options

IR-4 Work

o Parsnip

- o Small seeded
- Very slow emergence
- Highly susceptible to SCM damage
- Some evidence in snap beans of higher stand counts with Spinosad seed treatment as an option for organic growers
- Sampled for:
 - o Emergence
 - Early infestations

Product (EPA Reg. No.)	A.I.	Application Method ¹
Untreated (N/A)	N/A	N/A
Diazinon AG500 (66222-9; SLN OR 180003)	Diazinon	In-furrow
MBI-306 (N/A)	Burkholderia spp Strain A396	Seed treatment
Entrust (62719-282)	Spinosad	Seed treatment
Capture LFR (279-3302)	Bifenthrin	In-furrow

Capture LFR provided highest stand count

Results were variable between sample dates

Treatment means for emerged parsnip seedlings in 2022

Treatment	Cotyledon stage*	% above UTC	True leaf stage*	% above UTC
Untreated	3.62 ab		4.62 a	
Diazinon AG500	5.81 bc	60%	4.62 a	
MBI-306	3.25 a		4.94 ab	7%
Entrust	3.50 ab		4.88 ab	5%
Capture LFR	7.69 c	112%	7.62 b	65%

* Means with different letters are significantly different within sample date using Tukey-Kramer adjustment for multiple means comparisons.

Conclusions

- Seed corn maggot can be a pest in many vegetable crops
- Most susceptible are crops that are slow to germinate and emerge
- Organic crops may benefit from Spinosad seed treatment
- High organic matter inputs can be a source of attraction
- Degree day modeling can reduce risk

Kristie Buckland Vegetable and Seed Crop Extension Specialist North Willamette Research and Extension Center <u>kristine.buckland@oregonstate.edu</u> (503) 506-0955

